Office Equipment & Supplies Logo

Related Topics:

tristin symonds Posted on Dec 11, 2011
Answered by a Fixya Expert

Trustworthy Expert Solutions

At Fixya.com, our trusted experts are meticulously vetted and possess extensive experience in their respective fields. Backed by a community of knowledgeable professionals, our platform ensures that the solutions provided are thoroughly researched and validated.

View Our Top Experts

Matrix/scalar my study guide asked 'matrix B is the result of matrix A being multiplied by a scalar. A=[6, -45] B=[-1.5, y] [12, -48] [-3, 12] what should be the value y in matrix B?'

1 Answer

k24674

Level 3:

An expert who has achieved level 3 by getting 1000 points

Superstar:

An expert that got 20 achievements.

All-Star:

An expert that got 10 achievements.

MVP:

An expert that got 5 achievements.

  • Office Equip... Master 8,093 Answers
  • Posted on Jan 29, 2012
k24674
Office Equip... Master
Level 3:

An expert who has achieved level 3 by getting 1000 points

Superstar:

An expert that got 20 achievements.

All-Star:

An expert that got 10 achievements.

MVP:

An expert that got 5 achievements.

Joined: Aug 17, 2009
Answers
8093
Questions
0
Helped
4675006
Points
21596

Sorry, but your matrices do not make sense.If you multiply a matrix by a scalar the resulting (product) matrix has exactly the same structure as the one you multiplied : (mXn) times a yields another (mXn) matrix.
Be it as it may, when you multiply a matrix by a scalar, you obtain the product by multiplying every element of the original matrix by the scalar.

Here is a screen capture showing the multiplication of a 2X2 matrix by a scalar.


matrix/scalar - 1_29_2012_2_18_24_pm.png
Note: I have noticed that screen captures I insert in my answers are sometimes deleted (by FixYa?). So if you do not see a picture it has nothing to do with me.

3 Related Answers

k24674

  • 8093 Answers
  • Posted on Sep 05, 2009

SOURCE: how do i multiply a (2x2) matrix by a (2x1) in the ti 89

Hello,
The so-called (2x1) matrix is not a matrix. It is a vector.
Hope it helps.

Ad

kakima

  • 102366 Answers
  • Posted on Sep 07, 2010

SOURCE: error when multiplying martix with negative number

Having gone over a month with no response, I assume this is no longer a problem.

kakima

  • 102366 Answers
  • Posted on Jun 13, 2011

SOURCE: ti 89 titanium when multiply 2x2 matrix by 2x1

Matrix multiplication is defined only when the width of the first matrix is equal to the height of the second. You can multiply a 2x2 matrix by a 1x2 matrix or multiply a 2x1 matrix by a 2x2 matrix, but you cannot multiply a 2x2 matrix by a 2x1 matrix.

Add Your Answer

×

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

0helpful
1answer

How do i put my casio fx -100ms in matrix mode and how do i solve

Create a square matrix at mots 3X3. Then you can multiply it by a scalar, or scare it, or calculate its determinant, and inverse. With two matrices that have the same dimensions you can perform .additions/subtractions or multiplications.
0helpful
1answer

How to do matrix problems in fx991ms

The following was written for the Casio FX-991 ES. If matrix calculations are available on your calculator you will perform them as described below. ( I have no time to verify that the FX-991ms can perform matrix calculations).

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB
To subtract MatA-MatB
To multiply MatAxMatB
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match.
Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrice by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.
1helpful
1answer

How to multiply the matrices using fx-991ms calculator

The following was written for the Casio FX-991 ES. If matrix calculations are available on your calculator you will perform them as described below. ( I have no time to verify that the FX-991ms can perform matrix calculations).

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB
To subtract MatA-MatB
To multiply MatAxMatB
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match.
Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrice by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.
0helpful
1answer

We are trying to add, subtract, multiply, and divide matrixes, but the Casio calculator that we have will allow for us to input the information into the calc. However, it will not allow for us to add,...

This post is rather exhaustive as regards the matrix capabilities of the calculator. So if the post recalls things you already know, please skip them. Matrix multiplication is at the end. As to division of matrices, I do not believe that this operation exits.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2: D A T A] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)
To subtract MatA-MatB. (MUST have identical dimensions, see above)
To multiply MatAxMatB (See below for conditions on dimensions)
To raise a matrix to a power 2 [x2], cube [x3]
To obtain inverse of a SQUARE MatA already defined MatA[x^-1]. The key [x^-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrix by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.
0helpful
1answer

I'm trying to solve a matrix using your calc--I was able to follow the steps that were located on the internet, but it does not explain what you will do next. My partners and I have spent hours and we...

This post is rather exhaustive as regards the matrix capabilities of the calculator. So if the post recalls things you already know, please skip them. Matrix multiplication is at the end. As to division of matrices, I do not believe that this operation exits.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2: D A T A] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)
To subtract MatA-MatB. (MUST have identical dimensions, see above)
To multiply MatAxMatB (See below for conditions on dimensions)
To raise a matrix to a power 2 [x2], cube [x3]
To obtain inverse of a SQUARE MatA already defined MatA[x^-1]. The key [x^-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrix by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.
0helpful
1answer

Im trying to multiply matrices on my calculator and it always says "dim mismatch"

Dimensions of matrices involved in operations must match.

Here is a short summary

You can only add and subtract matrices that have the same dimensions: the numbers of rows must be equal, and the number of columns must be equal.

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrix by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).
Let there be two matrices MatA and MatB. The dimensions are indicated as mXn where m and n are natural numbers (1,2,3...)
The product MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * MatB(3Xn) is possible and meaningful, but
MatA(kX3) * MatB(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.
2helpful
1answer

How to use matrix in the calculator

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)
To subtract MatA-MatB. (MUST have identical dimensions, see above)
To multiply MatAxMatB (See below for conditions on dimensions)
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match.
Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrix by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.
1helpful
1answer

Matrix

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)
To subtract MatA-MatB. (MUST have identical dimensions, see above)
To multiply MatAxMatB (See below for conditions on dimensions)
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match.
Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrice by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.
2helpful
1answer

How to multiply two matricies?

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB
To subtract MatA-MatB
To multiply MatAxMatB
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match.
Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrice by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.

1helpful
2answers

I put my MatA and MatB but when I multiply them it displays a dimension erreor

I know this is a long time ago, but i am sure someone might ask eventually this same question.For the Casio fx-115es here are the instructions:go to mode, matrix, and pick the matrix you want to you.. you only have 3 options.create your matrix and press AC.Here is the tricky part, DO NOT go to mode again, that will reset your matrices that you have entered. Instead, press shift and the number 4 key, which is also matrix, go to press 1 (DIM), chose the other matrix to enter, and you can start mult, adding, etc.Any time you want to use the entered matrices, go through the matrix function, not the mode function.
Not finding what you are looking for?

165 views

Ask a Question

Usually answered in minutes!

Top Office Equipment & Supplies Experts

k24674

Level 3 Expert

8093 Answers

Brad Brown

Level 3 Expert

19187 Answers

ADMIN Andrew
ADMIN Andrew

Level 3 Expert

66947 Answers

Are you an Office Equipment and Supply Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...