Question about Casio FX-115ES Scientific Calculator

Ad

Here is an account of what you can do with matrices on this scientific calculator. Certain precautions must be taken as concerns the dimensions of the matrices. Refer to your text book on matrix algebra.

On this calculator the largest matrices you can define have dimensions 3X3.

- First you must set Matrix calculation: Press [MODE][6:Matrix].
- Then by entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix (mxn].
- Once finished entering the matrix you clear the screen.
- The operations on A SINGLE matrix are available by pressing [Shift][Matrix].
- The choices are

- [1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
- [2:Data] enter values in a matrix
- [3:MatA] access Matrix A
- [4:MatB] access Matrix B
- [5:MatC] access matrix C
- [6:MatAns] access the Answer Matrix (the last matrix calculated)
- [7:det] Calculate the determinant of a matrix already defined
- [8:Trn] The transpose of a matrix already defined

Once you have created a square matrix, for example matA.

You press [Shift][Matrix] [7:det] [SHIFT][MATRIX][3:MatA], close the parenthesis and press [ENTER].

If you have defined two similar matrices (same number of row and same number of columns) you can ADD them or subtract them. The operation keys are Plus and Minus as for any number.

To multiply you use the multiplication sign. The matrices must be compatible (mxn) multiplied by (nxk).

Posted on Aug 11, 2011

Ad

SOURCE: please tell me to find

- Press the "Mode" key next to the "On" button.
- Press 6 to choose matrix
- Press 1 to Enter the matrix data in MatA
- It will ask for the Row by Column dimensions (mxn), press the corresponding key, for this example we'll use a 2x2 matrix, so press 5.
- Enter the data into the calculator using the arrow keys and number keys.

The for now enter 1 0 as the matrix (press the = key after you have finished entering a number). 0 1 - Press the AC key once the matrix has been entered.
- Now press SHIFT, 4 and press 3 to select MatA
- "MatA" will now be displayed on your screen
- Press the "-1" key (just below the mode key)
- "MatA-1" should be on your screen, press the = key.
- The inverse of the matrix will be displayed.

Posted on Jul 02, 2011

Ad

Put calculator in matrix mode.

Create two matrices with the same dimensions (up to 3X3).

Display the name of the 1st matrix, press the multiplication key, display the name of the 2nd matrix and press = or EXE. The result will be a matrix with the same dimensions.

Create two matrices with the same dimensions (up to 3X3).

Display the name of the 1st matrix, press the multiplication key, display the name of the 2nd matrix and press = or EXE. The result will be a matrix with the same dimensions.

Mar 02, 2014 | Casio FX991MS Scientific Calculator

The following was written for the Casio FX-991 ES. If matrix
calculations are available on your calculator you will perform them as
described below. ( I have no time to verify that the FX-991ms can
perform matrix calculations).

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrice by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Nov 07, 2012 | Casio FX991MS Scientific Calculator

The following was written for the Casio FX-991 ES. If matrix calculations are available on your calculator you will perform them as described below. ( I have no time to verify that the FX-991ms can perform matrix calculations).

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrice by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Nov 06, 2012 | Casio FX991MS Scientific Calculator

- First you must set Matrix calculation: Press [MODE][6:Matrix].
- Then by entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix (mxn].
- Once finished entering the matrix you clear the screen.
- The operations on A SINGLE matrix are available by pressing [Shift][Matrix].
- The choices are

- [1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
- [2:Data] enter values in a matrix
- [3:MatA] access Matrix A
- [4:MatB] access Matrix B
- [5:MatC] access matrix C
- [6:MatAns] access the Answer Matrix (the last matrix calculated)
- [7:det] Calculate the determinant of a matrix already defined
- [8:Trn] The transpose of a matrix already defined

Once you have created a square matrix, for example matA.

You press [Shift][Matrix] [7:det] [SHIFT][MATRIX][3:MatA], close the parenthesis and press [ENTER].

If you have defined two similar matrices (same number of row and same number of columns) you can ADD them or subtract them. The operation keys are Plus and Minus as for any number.

To multiply you use the multiplication sign. The matrices must be compatible (mxn) multiplied by (nxk).

Aug 10, 2011 | Casio FX-115ES Scientific Calculator

This
post is rather exhaustive as regards the matrix capabilities of the
calculator. So if the post recalls things you already know, please skip
them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrix by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Apr 24, 2011 | Casio FX-115ES Scientific Calculator

This
post is rather exhaustive as regards the matrix capabilities of the
calculator. So if the post recalls things you already know, please skip
them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrix by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Jan 09, 2011 | Casio FX-115ES Scientific Calculator

- First you must set Matrix calculation: Press [MODE][6:Matrix].
- Then by entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix (mxn].
- Once finished entering the matrix you clear the screen.
- The operations on A SINGLE matrix are available by pressing [Shift][Matrix].
- The choices are

- [1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
- [2:Data] enter values in a matrix
- [3:MatA] access Matrix A
- [4:MatB] access Matrix B
- [5:MatC] access matrix C
- [6:MatAns] access the Answer Matrix (the last matrix calculated)
- [7:det] Calculate the determinant of a matrix already defined
- [8:Trn] The transpose of a matrix already defined

Once you have created a square matrix, for example matA.

You press [Shift][Matrix] [7:det] [SHIFT][MATRIX][3:MatA], close the parenthesis and press [ENTER].

If you have defined two similar matrices (same number of row and same number of columns) you can ADD them or subtract them. The operation keys are Plus and Minus as for any number.

To multiply you use the multiplication sign. The matrices must be compatible (mxn) multiplied by (nxk).

Sep 27, 2010 | Casio FX-115ES Scientific Calculator

Let me explain how to create matrices. (If you know how to do it, skip
to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrix by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Aug 06, 2010 | Casio FX-115ES Scientific Calculator

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrice by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Mar 06, 2010 | Casio FX-115ES Scientific Calculator

Hello

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match (see you textbook for the rules)

Read the appendix to your user manual, there are several exemples.

Hope helps

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match (see you textbook for the rules)

Read the appendix to your user manual, there are several exemples.

Hope helps

Sep 10, 2009 | Casio FX-115ES Scientific Calculator

441 views

Usually answered in minutes!

×