2000 Ford Expedition Logo
Posted on Aug 03, 2008

Air Suspension plomlem

My air suspension compressor is not coming on. try to desconnect the battery and click the air suspension switch a couple of times,nothing happen,Iam riding like i in a rodeo,but my suspension light is not on,any sugestion /

  • 1 more comment 
  • Anonymous Dec 16, 2008

    how do i know if the Compressor is bad, how can i test it...?

  • Anonymous Mar 21, 2014

    how to replace air ride to coil springs

  • Anonymous Mar 21, 2014

    replace air ride suspension with coil spring

×

1 Answer

rangerdth

Level 1:

An expert who has achieved level 1.

Corporal:

An expert that has over 10 points.

Welcome Back:

Visited the website for 2 consecutive days.

Mayor:

An expert whose answer got voted for 2 times.

  • Contributor 9 Answers
  • Posted on Aug 06, 2008
rangerdth
Contributor
Level 1:

An expert who has achieved level 1.

Corporal:

An expert that has over 10 points.

Welcome Back:

Visited the website for 2 consecutive days.

Mayor:

An expert whose answer got voted for 2 times.

Joined: Aug 06, 2008
Answers
9
Questions
0
Helped
3639
Points
48

1. make sure the switch is on (under the passenger side dash board). 2. check to make sure the relay is good (black little box under the right front bumper. 3. there are two (that I know of) switches/sensors.  1 is behind the left front tire.  The other is up behind the spare tire.  Taking the spare tire off gives you tons of room to work with.  The sensors look like mini shock absorbers with black rubber and can be compressed and pulled easily by hand.  Moving those will simulate the suspension going up and down and should trigger the compressor. 4. if the compressor doesn't come on (and all the above is fine) it sounds like your compressor is bad and should be replaced.  I got one from Arnott Industries in Florida and they have been very nice to work with so far.

Add Your Answer

×

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

0helpful
2answers

I have a 99 expedition, air ride suspension went out. Changed the air compressor and still will not air up. Checked the relay and seems to be working. One other time this happened and friend changed a...

Your best bet take it an have it diagnosed ! This is computer controlled an may have DTC'S - diagnostic trouble codes stored !
C1724 Air Suspension Height Sensor Power Circuit Failure Air Suspension Control Module GO to Pinpoint Test F . C1726 Air Suspension Rear Pneumatic Failure Air Suspension Control Module GO to Pinpoint Test G . C1760 Air Suspension Rear Height Sensor High Signal Circuit Failure Air Suspension Control Module GO to Pinpoint Test H . C1770 Air Suspension Vent Solenoid Output Circuit Failure Air Suspension Control Module GO to Pinpoint Test I . C1790 Air Suspension LR Air Spring Solenoid Output Circuit Failure Air Suspension Control Module GO to Pinpoint Test J . C1795 Air Suspension RR Air Spring Solenoid Output Circuit Failure Air Suspension Control Module GO to Pinpoint Test K . C1830 Air Suspension Compressor Relay Circuit Failure Air Suspension Control Module GO to Pinpoint Test L
Symptom Chart Condition Possible Sources Action
  • No communication with the air suspension control module
  • CJB Fuse 4 (15A), 6 (5A) and 20 (5A).
  • Circuitry.
  • Air suspension control module.
  • Air suspension switch.
  • GO to Pinpoint Test A .

You replaced a part that you probably didn't need !
  • The compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.
  • GO to Pinpoint Test Q .

There is a lot to this system an guessing as to what the problem is ,isn't the way to fix it.
Measure the voltage between air compressor relay C1000 Pin A, Circuit 1053 (LB/PK), harness side and ground.
  • Is the voltage greater than 10 volts?
Yes GO to Q3 .

No REPAIR the circuit. CLEAR the DTCs. REPEAT the self-test.
Measure the resistance between air compressor C1000 Pin B, Circuit 538 (GY/RD), harness side and air compressor assembly C194M Pin 4, Circuit 538 (GY/RD), harness side.
  • Is the resistance less than 5 ohms?
Yes GO to Q4 .

No REPAIR the circuit. CLEAR the DTCs. REPEAT the self-test.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
  • Air Suspension Control Module
    NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
    NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
    The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
    The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
0helpful
1answer

I have a 2001 town car with a suspension problem. I just replaced the air bags. A month later the pump started to run too much. I tried soapy water but found no leaks.Yesterday the back end droped and the...

Having it hooked up to a factory scan tool would be your best bet . Check for DTC'S diagnostic trouble codes . Without testing ,code scan ,we'd only be guessing .
Very complex , the untrained person hasn't got a pray of fixing this . You have no idea what your dealing with . Vehicle Dynamic Suspension The vehicle dynamic suspension consists of the following components:
  • Rear air suspension control (RAS) module (5A919)
  • Snorkel
  • Drier
  • Air compressor (5319)
  • Air suspension switch (5K761)
  • Solenoid valve (5311)
  • Air spring (5560)
  • Air suspension height sensor (5359)
  • Air line
  • Rear Air Suspension Control Module
    A microprocessor controls the air suspension system. The microprocessor and its supporting hardware are contained in the rear air suspension control module. The rear air suspension control module responds to signals from various sensors in the vehicle to maintain the programmed ride height while the vehicle is either moving or stopped. The rear air suspension control module accomplishes this by opening and closing solenoid valves to control the amount of air in the air spring(s). The rear air suspension control module turns on the compressor by applying voltage through the compressor relay to inflate the air spring(s) and raise the vehicle. The rear air suspension control module opens the vent solenoid to lower the vehicle by releasing air from the air spring(s) in response to signal inputs from the air suspension height sensor(s).
  • Rear Air Suspension Control Module Diagnostic Trouble Code (DTC) Index DTC Description Source Action B1317 Battery Voltage High Rear Air Suspension Control Module GO to Pinpoint Test C . B1318 Battery Voltage Low Rear Air Suspension Control Module GO to Pinpoint Test C . B1342 ECU Is Defective Rear Air Suspension Control Module INSTALL a new rear air suspension control module. REFER to Module-Air Suspension Control . TEST the system for normal operation. C1441 Steering Sensor Channel A Circuit Failure Rear Air Suspension Control Module REFER to Section 211-00 . C1442 Steering Sensor Channel B Circuit Failure Rear Air Suspension Control Module REFER to Section 211-00 . C1722 Air Suspension Height Sensor Power Circuit Short to Power Rear Air Suspension Control Module GO to Pinpoint Test D . C1723 Air Suspension Height Sensor Power Circuit Short to Ground Rear Air Suspension Control Module GO to Pinpoint Test E . C1760 Air Suspension Rear Height Sensor High Signal Circuit Failure Rear Air Suspension Control Module GO to Pinpoint Test F . C1763 Air Suspension Rear Height Sensor High Signal Circuit Short to Ground Rear Air Suspension Control Module GO to Pinpoint Test G . C1765 Air Suspension Rear Height Sensor Low Signal Circuit Failure Rear Air Suspension Control Module GO to Pinpoint Test F . C1768 Air Suspension Rear Height Sensor Low Signal Circuit Short to Ground Rear Air Suspension Control Module GO to Pinpoint Test H . C1770 Air Suspension Vent Solenoid Output Circuit Failure Rear Air Suspension Control Module GO to Pinpoint Test I . C1773 Air Suspension Vent Solenoid Output Circuit Short to Ground Rear Air Suspension Control Module GO to Pinpoint Test J . C1790 Air Suspension LR Air Spring Solenoid Output Circuit Failure Rear Air Suspension Control Module GO to Pinpoint Test K . C1793 Air Suspension LR Air Spring Solenoid Output Circuit Short to Ground Rear Air Suspension Control Module GO to Pinpoint Test L . C1795 Air Suspension RR Air Spring Solenoid Output Circuit Failure Rear Air Suspension Control Module GO to Pinpoint Test M . C1798 Air Suspension RR Air Spring Solenoid Output Circuit Short to Ground Rear Air Suspension Control Module GO to Pinpoint Test N . C1813 Air Suspension Vent Request Exceeded Max Timing Rear Air Suspension Control Module GO to Pinpoint Test O . C1818 Air Suspension Air Compressor Request Exceeded Max Timing Rear Air Suspension Control Module GO to Pinpoint Test P . C1830 Air Compressor Relay Circuit Failure Rear Air Suspension Control Module GO to Pinpoint Test Q . C1832 Air Compressor Relay Circuit Short to Power Rear Air Suspension Control Module GO to Pinpoint Test R . C1840 Air Suspension Switch Circuit Failure Rear Air Suspension Control Module GO to Pinpoint Test S . C1842 Air Suspension Switch Circuit Short to Power Rear Air Suspension Control Module GO to Pinpoint Test D . C1897 Steering VAPS Circuit Loop Failure Rear Air Suspension Control Module REFER to Section 211-00 . U1041 SPC Invalid or Missing Data for Vehicle Speed
0helpful
1answer

AIR SUSPENSION LIGHT STAYS ON THEN BATTERY COMPLETELY DRAINS IN A COUPLE OF DAYS ON 2002 LINCOLN TOWN CAR HAVE REPLACED BATTERY AND RELAY SWITCH STILL DIES AFTER A COUPLE OF DAYS

It's possible you have a leak in the air suspension and the air compressor is trying to keep it aired up which is draining our battery. Disconnect the power from the air compressor for a couple of days. If your battery still goe down, then the problem is somewhere else. If you do have aleak, then the air suspension will probably be bottomed out by that time, but your battery should still be good.
0helpful
1answer

Air suspension will not come up, compressor is not

Ok lets try this from the top,

Check the boot/trunk for the Air suspension switch make sure it accidently hasnt been turned off.,

You said you checked the fuses make sure you pulled it out and checked it not just glanced to double check,

Go to the engine bay and open up the fuse box above the battery Swap the horn and Air suspension relay *Marked on box* around and try the horn, if the horn doesnt work you found your issue and a new relay is needed.

If no avial i point you to this tech artical done by Lincoln owners for other owners theres alot of other tech tips to i'd suggest book marking the site

http://www.lincolnsonline.com/tech/00061.html


13helpful
3answers

The rear suspension air bags no work

start here

The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving condition:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) transfer case inputs, and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines, and the use of an air spring with an air spring solenoid.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed and the vehicle speed exceeds 16 km/h (10 mph).
Air Suspension Switch
The air suspension switch is located behind the RH kick panel on a mounting bracket. The switch interrupts power to the air suspension control module.
The air suspension switch supplies a signal to the air suspension control module. Without the air suspension control module receiving this signal the load leveling system is inoperative and will not react when rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • Is not interchangeable with four wheel air suspension (4WAS) compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is mounted in the engine compartment between the washer fluid bottle and headlamp (RH front corner).
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • Air drier has a single port and is not interchangeable with 4WAS compressor air drier.
  • Air drier may be replaced separately.
  • Incorporates a snorkle that may be replaced separately.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is located in the air compressor cylinder head.
  • Has a 160 psi internal relief valve.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • Is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The air springs are mounted between the axle spring seats and the frame upper spring seats.
The two air springs replace the conventional rear coil springs.
Air Suspension Height Sensor
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing of the vehicle and related components.
The air suspension control module is mounted in the passenger compartment inside the instrument panel above the radio and temperature controls.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Air Suspension Diagnostic Connector
The air suspension diagnostic connector is used to aid the technician in diagnosing the air suspension system. It is also used to vent the system of compressed air when air suspension system components need to be repaired or replaced. The air suspension diagnostic connector is located under steering column.
0helpful
1answer

Where can i get a copy of the parts that make up the air suspesion of my 2001 grand marquis. sometime it works and other time it will not.

Vehicle Dynamic Suspension The vehicle dynamic suspension consists of the following components:
  • Rear air suspension control (RAS) module (5A919)
  • Snorkel
  • Drier
  • Air compressor (5319)
  • Air suspension switch (5K761)
  • Solenoid valve (5311)
  • Air spring (5560)
  • Air suspension height sensor (5359)
  • Air line
------------------------------------------------
Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed, or crimped air line(s)
  • Damaged air spring(s)
  • Height sensor damage
  • Height sensor mounted incorrectly, disconnected, or damaged
  • Central junction box (CJB):
    • Fuse 5 (15A)
  • Battery junction box (BJB):
    • Fuse 8 (30A)
  • Loose or corroded connectors
  • Air suspension switch OFF


The air suspension control module is diagnosed using Super Star II Tester 418-F045 (007-0041B) or equivalent.
The test connector used to communicate with the air suspension control module is located on the RH side of the luggage compartment.
When the tester is connected, the engine is started and the HOLD/TEST button is latched down, the air suspension control module will respond sending a code 10 to the Super Star II Tester which represents "Diagnostics mode entered." If diagnostic trouble code (DTC) 10 is not displayed, go to Pinpoint Test A.
Air Suspension Control Module Diagnostic Trouble Code (DTC) Index
Condition Possible Sources Action
  • No communication with the air suspension control module
  • CJB Fuse 5 (15A).
  • BJB Fuse 8 (30A).
  • Circuitry.
  • Air suspension control module.
  • GO to Pinpoint Test A .
  • Unable to enter auto test
  • Air suspension control module.
  • Circuitry.
  • GO to Pinpoint Test B .
  • Rear air suspension does not respond to load changes
  • Circuitry.
  • Air compressor.
  • Air compressor inlet tube.
  • Air compressor drier.
  • Air suspension height sensor.
  • Air suspension control module.
  • GO to Pinpoint Test C .
  • Rear rides low/high
  • Circuitry.
  • Air spring solenoid.
  • Air suspension height sensor.
  • Air suspension control module.
  • GO to Pinpoint Test C .
  • Poor ride quality
  • Circuitry.
  • Air springs.
  • GO to Pinpoint Test C .
  • Air suspension warning indicator ON
  • Air suspension switch OFF.
  • Place the air suspension switch in the ON position.
  • Air suspension control module.
  • Circuitry.
  • GO to Auto Test.
  • Instrument cluster (conventional cluster) or lamp warning module (electronic cluster).
  • REFER to Section 413-01A (conventional cluster) or REFER to Section 413-01B (electronic cluster), or REFER to Section 413-01C (natural gas cluster).


9helpful
3answers

Rear air suspension compressor not engaging.

what year? here's 2003 rear air only info, not 4 wheel air.

you have a fuse panel in truck and 1 under hood.




Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed or crimped air line(s)
  • Unmounted height sensor
  • Damaged air spring(s)
  • Open fuses:
    • Central junction box (CJB) Fuse 4 (15A), 6 (5A) and 20 (5A)
    • Battery junction box (BJB) Fuse 109 (50A)
  • Loose, corroded or disconnected connectors
  • Air suspension switch is in the OFF position
  • Damaged solenoid valve(s)

  • compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.
  • Go To Pinpoint Test P .



----------------------------------------------------------------------------

The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.

Air Suspension Switch
The air suspension switch supplies power to the air suspension control module. Without the air suspension control module receiving this power, the load leveling system is inoperative and will not react when the rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off the air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • is a single cylinder electric motor driven unit that provides pressurized air as required.
  • is powered by a solid state relay which is controlled by the air suspension control module.
  • passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • air drier has a single port.
  • air drier may be replaced separately.
  • incorporates a snorkel that may be replaced separately.
The vent solenoid:
  • allows air to escape from the system during venting actions.
  • is part of the air compressor cylinder head.
  • has a 1,103 kPa (160 psi) internal relief valve.
  • shares a common electrical connector with the air compressor motor.
  • is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • has an O-ring seal that prevents air leakage past the valve tip.
  • opens when the air suspension control module determines lowering is required.
  • provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The two air springs support the conventional rear leaf coil springs.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Solenoid Valve, Air Spring
s2j~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Never rotate an air spring solenoid valve to the release slot in the end cap fitting until all pressurized air has escaped from the spring to prevent damage or injury.
The air spring solenoid:
  • allows air to enter and exit the air spring during leveling operations.
  • is electrically operated and controlled by the air suspension control module.
  • is only installed as a unit.
3helpful
1answer

99 expedition air suspension compressor runs every couple minutes

It is normal for some cycling of the compressor as the ride heights change and the compressor vents and fills air springs. Info:

Air Compressor
The air compressor:
  • Is not interchangeable with the rear air suspension (RAS) air compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, which is controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • The drier may be replaced separately.
  • The drier has dual ports and is not interchangeable with the RAS drier.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is part of the air compressor cylinder head.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air when system pressures exceed safe operating levels.
  • Has a 1792 kPa (260 psi) internal relief valve.
  • Is installed with the air compressor as a unit.
Compressor Relay
A solid state relay is used in the air suspension system for compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
The compressor solid state relay is energized by the air suspension control module to have high current flow from the battery to the compressor motor.
Control Module
NOTE: The 4WAS control module is also used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS system.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensors. A new or swapped air suspension control module requires the ride height adjustment calibration process to be performed.
A microcontroller-based electronic air suspension control module controls the air compressor motor (through a solid state relay) and all system solenoids. The air suspension control module also provides power to front and rear height sensors. The air suspension control module controls vehicle height adjustments by monitoring the two height sensors, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module is interchangeable between the RAS and 4WAS system.
The air suspension control module monitors and controls the system through a 32-pin two-way connector. The air suspension control module is keyed so that it cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.

Pressure Relief Valve
The pressure relief valve (PRV) protects the rear air suspension components by venting the system to a specific pressure in the case of a system malfunction. The system will decrease the pressure to an acceptable level to maintain vehicle height. In the normal operation mode with normal system pressure, the PRV is constantly closed and does not have any effect on the system performance or function. The PRV is replaceable without any air lines.
  1. If the concern remains after the inspection, use New Generation STAR (NGS) Tester connected to the data link connector (DLC) to retrieve continuous diagnostic trouble codes (DTCs) and to execute On-Demand Self-Test diagnostics for the air suspension control module.
    • If the On-Demand Self-Test is passed and no DTCs are retrieved, go to the Symptom Chart to continue diagnostics.
    • If DTCs are retrieved, go to Air Suspension Control Module Diagnostic Trouble Code (DTC) Index in this section.
    • If the air suspension control module cannot be accessed by NGS Tester, go to Pinpoint Test A.
Self-Test
Verify that the following conditions are met before running the On-Demand Self-Test.
  • All doors, liftgate, and liftgate glass must be closed.
  • The transmission is in PARK.
  • The BPP switch is not pressed during the test and the parking brake is not set.
  • The accelerator pedal is not pressed during the test.
  • The vehicle is not in 4L mode.
  1. Fulfill the pre-conditions.
  1. Install a battery charger for the On-Demand Self-Test to prevent battery drain.
  1. Run the air suspension On-Demand Self-Test.
  1. Record all listed DTCs.
  1. Retrieve stored DTCs.
  1. Troubleshoot any On-Demand Self-Test DTCs first.
  1. Retest and clear DTCs after repairs.
3helpful
2answers

Airride suspension won't deflate only inflate

It will only process a "down command" if it thinks all the doors are closed. If you have a bad door switch, it won't lower. Any courtesy lights on with doors closed?
The dealer can conduct a diagnostic scan test and retrieve any codes that will help identify the bad circuit. Did they do that?

Do you have 4 wheel air suspension or just rear?

Assuming rear only:
The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.

Note this section.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed or the vehicle speed exceeds 16 km/h (10 mph).

Air Suspension Switch
The air suspension switch supplies power to the air suspension control module. Without the air suspension control module receiving this power, the load leveling system is inoperative and will not react when the rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off the air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
--------------------------------------------------------------------
The vent solenoid:
  • allows air to escape from the system during venting actions.
  • is part of the air compressor cylinder head.
  • has a 1,103 kPa (160 psi) internal relief valve.
  • shares a common electrical connector with the air compressor motor.
  • is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • has an O-ring seal that prevents air leakage past the valve tip.
  • opens when the air suspension control module determines lowering is required.
  • provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • is replaced with the air compressor as a unit.
---------------------------------------------------------------
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
---------------------------------------------------
May be a bad module too.
2helpful
2answers

My air suspension compressor is not coming on i check the compressor its good i jump started it the front start lefting up but not the back only thing happen air was in the bag, so i switch the height...

It sounds to me like your compressor got killed. What probably happened is that the airbag got a hole or tiny crack in it so the compressor has to work extra hard because it is like blowing up a balloon with a hole in it. Therefor the airbag killed the compressor. I would recommend going to strutmasters.com and taking a look at our conversion kits. these convert you from the airbag to a powder coated American made steel coil spring that is guaranteed to last the life of the car. I added the link below so you can check it out.
http://www.strutmasters.com/ford-suspension-parts-s/75.htm I hope I was of some help
Good Luck!!!
Not finding what you are looking for?

753 views

Ask a Question

Usually answered in minutes!

Top Ford Experts

ZJ Limited
ZJ Limited

Level 3 Expert

17989 Answers

Ronny Bennett Sr.
Ronny Bennett Sr.

Level 3 Expert

6988 Answers

Thomas Perkins
Thomas Perkins

Level 3 Expert

15088 Answers

Are you a Ford Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...