Question about Casio FX-9860G Graphic Calculator

Here is enough to get you started and a little more.

Read
the post ant consult your calculator manual.

How to calculate the determinant of a (square, non-singular) matrix is described in part B **A. Define a matrix (Create it)**

- Turn calculator ON.
- Press Menu,select the MAT icon and press [EXE]
- You see a list of possible matrix labels (A, B, C,D,E,F)
- All that have not been created have a "none" to their right
- Highlight a matrix name and press the right arrow. Where there was "none" , you have a template 0x0.
- That is where you specify the dimensions (mxn). example. 2x2
- Enter the first dimension and press [EXE]
- Enter the 2nd dimension and press [EXE]
- A matrix template opens where you enter the coefficients left to right and up down.
- After each coefficient press [EXE]. Cursor moves to the next coefficient, etc.

Once you have one matrix, you can do operations on it: Calculate the determinant (if matrix is square), calculate its inverse, transpose, augment it, fill it, etc..

- These operations are accessed as follows.
- Quit the matrix editor by pressing [Menu] and selecting the [Run] application.
- Press [OPTN][F2:MAT]
- You have the menus Mat,M(atrix)->L(ist), Det(erminant), Trn (transpose), Aug(ment) ->, Iden(tity),Dim(ension) Fill

- You press the [OPTN][F2:MAT] key sequence (just above)
- Press [F3:Det]; the command
**det**is displayed on screen. - Press [F1:Mat] the identifier
**Mat**is displayed. - Press [ALPHA] A; screen display
**det Mat A**. - Press [EXE] to get the value of the determinant.

[OPTN][F2:MAT] (MAT) [Alpha] A ^2 [EXE]

D. Product of two compatible matrices MatAXMatB

[OPTN][F2:MAT] (MAT) [Alpha] A [*] (MAT) [ALPHA] B [EXE]

Part E Invert a (square, non singular) matrix that was already defined.

Press [OPTN] [F2:Mat] to open a screen similar to the one in capture above

Press [F1:Mat] to have identifier Mat displayed.

Enter the name of the matrix by pressing [ALPHA] A, for example.

Press [SHIFT] [ ) ] activate the (x^-1) key.

This is what you might see (with parentheses and without).

Press [EXE] button to calculate the inverse.

Posted on Apr 09, 2011

Hi,

a 6ya expert can help you resolve that issue over the phone in a minute or two.

best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).

click here to download the app (for users in the US for now) and get all the help you need.

goodluck!

Posted on Jan 02, 2017

One example: the determinant of a 4x4 identity matrix is 1.

Use the matrix editor to create a 4x4 matrix with 1s along the main diagonal (upper-left to lower-right) and 0s elsewhere. Then use the det() function to calculate the determinant of this matrix.

Use the matrix editor to create a 4x4 matrix with 1s along the main diagonal (upper-left to lower-right) and 0s elsewhere. Then use the det() function to calculate the determinant of this matrix.

Sep 07, 2013 | Texas Instruments TI-83 Plus Calculator

What do you mean by "solve matrix"? Do you want its determinant? Its inverse? The eigenvalues and eigenvector? Solve a system of linear equations?

Jun 11, 2013 | Casio FC-200V Scientific Calculator

Press the MODE key. and press 4 for MATRIX.

To enter a matrix press the MATH button and choose 2 for EDIT. Determine the size of your matrix by typing in the row x column value (maximum 4). Then press =. Type in the values in your matrix. After each value press = to move to the next part of the table. Once your matrix is complete press ON and then the MATH button. This time choose 4 for STORE. Select the matrix name you would like to store your matrix in - for example choose 0 for matA. Now press MATH and press the down arrow key once. Select 6 for CALC and choose 0 for det (determinant). Then input the matrix you want the determinant of by pressing MATH and 1 for MATRIX. Select the matrix you would like to work with eg, matA and press then press =.

To enter a matrix press the MATH button and choose 2 for EDIT. Determine the size of your matrix by typing in the row x column value (maximum 4). Then press =. Type in the values in your matrix. After each value press = to move to the next part of the table. Once your matrix is complete press ON and then the MATH button. This time choose 4 for STORE. Select the matrix name you would like to store your matrix in - for example choose 0 for matA. Now press MATH and press the down arrow key once. Select 6 for CALC and choose 0 for det (determinant). Then input the matrix you want the determinant of by pressing MATH and 1 for MATRIX. Select the matrix you would like to work with eg, matA and press then press =.

Aug 22, 2012 | Sharp ELW516 Scientific Calculator

Here is enough to get you started and a little more.

Read the post ant consult your calculator manual. The screen captures below may not look exactly as your calculator but the steps are identical.

**A. Define a matrix (Create it)**

**B Operations on matrices**

Once you have one matrix, you can do operations on it: Calculate the determinant (if matrix is square), calculate its inverse, transpose, augment it, fill it, etc..

[OPTN][F2:MAT] (MAT) [Alpha] A ^2 [EXE]

D. Product of two compatible matrices MatAXMatB

[OPTN][F2:MAT] (MAT) [Alpha] A [*] (MAT) [ALPHA] B [EXE]

Part E Invert a (square, non singular) matrix that was already defined.

Press [OPTN] [F2:Mat] to open a screen similar to the one in capture above

Press [F1:Mat] to have identifier Mat displayed.

Enter the name of the matrix by pressing [ALPHA] A, for example.

Press [SHIFT] [ ) ] activate the (x^-1) key.

This is what you might see (with parentheses and without).

Press [EXE] button to calculate the inverse.

Read the post ant consult your calculator manual. The screen captures below may not look exactly as your calculator but the steps are identical.

- Turn calculator ON.
- Press Menu,select the MAT icon and press [EXE]
- You see a list of possible matrix labels (A, B, C,D,E,F)
- All that have not been created have a "none" to their right
- Highlight a matrix name and press the right arrow. Where there was "none" , you have a template 0x0.
- That is where you specify the dimensions (mxn). example. 2x2
- Enter the first dimension and press [EXE]
- Enter the 2nd dimension and press [EXE]
- A matrix template opens where you enter the coefficients left to right and up down.
- After each coefficient press [EXE]. Cursor moves to the next coefficient, etc.

Once you have one matrix, you can do operations on it: Calculate the determinant (if matrix is square), calculate its inverse, transpose, augment it, fill it, etc..

- These operations are accessed as follows.
- Quit the matrix editor by pressing [Menu] and selecting the [Run] application.
- Press [OPTN][F2:MAT]
- You have the menus Mat,M(atrix)->L(ist), Det(erminant), Trn (transpose), Aug(ment) ->, Iden(tity),Dim(ension) Fill

- You press the [OPTN][F2:MAT] key sequence (just above)
- Press [F3:Det]; the command
**det**is displayed on screen. - Press [F1:Mat] the identifier
**Mat**is displayed. - Press [ALPHA] A; screen display
**det Mat A**. - Press [EXE] to get the value of the determinant.

[OPTN][F2:MAT] (MAT) [Alpha] A ^2 [EXE]

D. Product of two compatible matrices MatAXMatB

[OPTN][F2:MAT] (MAT) [Alpha] A [*] (MAT) [ALPHA] B [EXE]

Part E Invert a (square, non singular) matrix that was already defined.

Press [OPTN] [F2:Mat] to open a screen similar to the one in capture above

Press [F1:Mat] to have identifier Mat displayed.

Enter the name of the matrix by pressing [ALPHA] A, for example.

Press [SHIFT] [ ) ] activate the (x^-1) key.

This is what you might see (with parentheses and without).

Press [EXE] button to calculate the inverse.

Apr 20, 2011 | Casio FX-9750GPlus Calculator

The FX-991ES offers simple matrix operations like basic arithmetic, plus the slightly more complex operations determinant and inversion. Furthermore, it is limited to matrices with a maximum size of three rows and three columns.

The rank of a matrix is defined as the number of linearly independent row or column vectors. You can perform a simple partial test for square matrices by calculating the determinant of the matrix:

Unfortunately, this is all support the calculator offers. For small matrices (i.e. 4x4 or smaller), you should familiarize yourself with the Gau? Elimination Method algorithm for solving linear equation systems. It is a two-step procedure where a matrix first is converted to its row echelon form, and second to row canonical form to solve the LES.

You need to follow the algorithm only through the first part, the number of non-zero rows after this step equals the rank of the matrix. With a little exercise you will be able to do it faster on paper than trying to do it with your calculator only.

For larger matrices I suggest to use a PC with more powerful math software (Maple, Mathematica, ...) or, if you know some basic computer programming, just write the necessary program yourself, which is also a very good exercise both in programming and understanding the algorithm.

The rank of a matrix is defined as the number of linearly independent row or column vectors. You can perform a simple partial test for square matrices by calculating the determinant of the matrix:

- Enter the matrix into matrix variable MatA.
- Press [SHIFT] [4] [7] [SHIFT] [4] [3] [)] [=]

Unfortunately, this is all support the calculator offers. For small matrices (i.e. 4x4 or smaller), you should familiarize yourself with the Gau? Elimination Method algorithm for solving linear equation systems. It is a two-step procedure where a matrix first is converted to its row echelon form, and second to row canonical form to solve the LES.

You need to follow the algorithm only through the first part, the number of non-zero rows after this step equals the rank of the matrix. With a little exercise you will be able to do it faster on paper than trying to do it with your calculator only.

For larger matrices I suggest to use a PC with more powerful math software (Maple, Mathematica, ...) or, if you know some basic computer programming, just write the necessary program yourself, which is also a very good exercise both in programming and understanding the algorithm.

Jan 16, 2011 | Casio FX-115ES Scientific Calculator

I will not try to guess what you mean by "solve a matrix", but I believe that what follows will help you.

Once you have created a square matrix, for example matA.

You press [Shift][Matrix] [7:det] [SHIFT][MATRIX][3:MatA], close the parenthesis and press [ENTER].

If you have defined two similar matrices (same number of row and same number of columns) you can ADD them or subtract them. The operation keys are Plus and Minus as for any number.

To multiply you use the multiplication sign. The matrices must be compatible (mxn) multiplied by (nxk).

If you know the theory behind systems of linear equations you can use matrices to solve the systems.

- First you must set Matrix calculation: Press [MODE][6:Matrix].
- Then by entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix (mxn].
- Once finished entering the matrix you clear the screen.
- The operations on A SINGLE matrix are available by pressing [Shift][Matrix].
- The choices are

- [1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
- [2:Data] enter values in a matrix
- [3:MatA] access Matrix A
- [4:MatB] access Matrix B
- [5:MatC] access matrix C
- [6:MatAns] access the Answer Matrix (the last matrix calculated)
- [7:det] Calculate the determinant of a matrix already defined
- [8:Trn] The transpose of a matrix already defined

Once you have created a square matrix, for example matA.

You press [Shift][Matrix] [7:det] [SHIFT][MATRIX][3:MatA], close the parenthesis and press [ENTER].

If you have defined two similar matrices (same number of row and same number of columns) you can ADD them or subtract them. The operation keys are Plus and Minus as for any number.

To multiply you use the multiplication sign. The matrices must be compatible (mxn) multiplied by (nxk).

If you know the theory behind systems of linear equations you can use matrices to solve the systems.

Nov 26, 2010 | Casio FX-115ES Scientific Calculator

What do you mean by "solve a matrix"? Find the inverse? Find the determinant? Find the solution to a system of linear equations? Within limits the fx-115ES can do any of these and more.

The procedures are described in the "Matrix Calculations" section of the manual. If you still have problems, please reply to this post specifying what you want to do.

The procedures are described in the "Matrix Calculations" section of the manual. If you still have problems, please reply to this post specifying what you want to do.

Nov 18, 2010 | Casio FX-115ES Scientific Calculator

The parameter is the name of the matrix, available from the matrix menu SHIFT 4.

Nov 09, 2010 | Casio FX-115ES Scientific Calculator

Assuming you have a square matrix in MatA, press SHIFT [MATRIX] 7 SHIFT [MATRIX] 3 EXE

[MATRIX] is the shifted function of the 4 key. MATRIX 7 invokes the determinant function and MATRIX 3 names MatA

[MATRIX] is the shifted function of the 4 key. MATRIX 7 invokes the determinant function and MATRIX 3 names MatA

Oct 23, 2010 | Casio FX-115ES Scientific Calculator

I solve your problem but there is a little mistake that I can't find but maybe you can so here what I wrote:

#include <graphics.h>

#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

#include <dos.h>

#include <math.h>

#define n 3

typedef struct

{

double A[n][n];

int size;

}Matrix;

double det(Matrix mat);

Matrix cut(Matrix mat, int x);

int main(void)

{

clrscr();

double d;

Matrix mat;

mat.size=n;

mat.A[0][0]=1;

mat.A[0][1]=2;

mat.A[0][2]=3;

mat.A[1][0]=4;

mat.A[1][1]=4;

mat.A[1][2]=6;

mat.A[2][0]=7;

mat.A[2][1]=8;

mat.A[2][2]=9;

d=det(mat);

printf("%d",d);

getch();

return 0;

}

double det(Matrix mat)

{

double d=0;

if(mat.size>2)

for(int i=0;i<mat.size;i++)

d+=pow(-1,i)*mat.A[0][i]*det(cut(mat,i));

else

d=mat.A[0][0]*mat.A[1][1]-mat.A[0][1]*mat.A[1][0];

return d;

}

Matrix cut(Matrix mat, int x)

{

Matrix cutmat;

cutmat.size=mat.size-1;

for(int i=0;i<cutmat.size;i++)

for(int j=0;j<cutmat.size;j++)

if(j<x)

cutmat.A[i][j]=mat.A[i+1][j];

else

cutmat.A[i][j]=mat.A[i+1][j+1];

return cutmat;

}

Rate me if it helped!

And if you find the mistake please tell me where thanks.

#include <graphics.h>

#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

#include <dos.h>

#include <math.h>

#define n 3

typedef struct

{

double A[n][n];

int size;

}Matrix;

double det(Matrix mat);

Matrix cut(Matrix mat, int x);

int main(void)

{

clrscr();

double d;

Matrix mat;

mat.size=n;

mat.A[0][0]=1;

mat.A[0][1]=2;

mat.A[0][2]=3;

mat.A[1][0]=4;

mat.A[1][1]=4;

mat.A[1][2]=6;

mat.A[2][0]=7;

mat.A[2][1]=8;

mat.A[2][2]=9;

d=det(mat);

printf("%d",d);

getch();

return 0;

}

double det(Matrix mat)

{

double d=0;

if(mat.size>2)

for(int i=0;i<mat.size;i++)

d+=pow(-1,i)*mat.A[0][i]*det(cut(mat,i));

else

d=mat.A[0][0]*mat.A[1][1]-mat.A[0][1]*mat.A[1][0];

return d;

}

Matrix cut(Matrix mat, int x)

{

Matrix cutmat;

cutmat.size=mat.size-1;

for(int i=0;i<cutmat.size;i++)

for(int j=0;j<cutmat.size;j++)

if(j<x)

cutmat.A[i][j]=mat.A[i+1][j];

else

cutmat.A[i][j]=mat.A[i+1][j+1];

return cutmat;

}

Rate me if it helped!

And if you find the mistake please tell me where thanks.

Mar 06, 2009 | Intel Computers & Internet

521 people viewed this question

Usually answered in minutes!

×