I have a triangle 1 angle 90 degrees, 1 angle 53 degrees and one angle 37 degrees. I have the length between the 90 degree and the 37 degree which is 45 feet. I need to know what the length is between the 90 degree and the 53 degree angles. thanks

45 tan(37) or about 39.1 feet.

Posted on Mar 29, 2014

Might try

(54tan)/45

I don't have a calc that will do it or I would try it and see.

Posted on Aug 01, 2008

Hi,

a 6ya expert can help you resolve that issue over the phone in a minute or two.

best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).

click here to download the app (for users in the US for now) and get all the help you need.

goodluck!

Posted on Jan 02, 2017

There is probably a formula for this or other ways of doing this, but I will give it a shot.

An octagon has 8 sides (octopus has 8 legs). To make an octagon, we effectively have 8 triangles joined at the centre. In the centre, we have 8 equal angles. Since a full circle is 360 degrees, each of these angles must be 360 / 8 or 45 degrees.

Now we can just focus on one of these triangles. We have an angle of 45 degrees at the centre and two arms extending out 10 feet.

At this point, we can use the cosine law to calculate the length of the side or we can recognize that it is an isosceles triangle and work out the other angles and determine the length of the side.

Using Cosine Law, a^2= b^2 + c^2 - 2xbxc Cos A

In this case, A = 45 degrees, b = 10 feet, c=10 feet.

Good luck.

Let me know if you have any questions.

Paul

An octagon has 8 sides (octopus has 8 legs). To make an octagon, we effectively have 8 triangles joined at the centre. In the centre, we have 8 equal angles. Since a full circle is 360 degrees, each of these angles must be 360 / 8 or 45 degrees.

Now we can just focus on one of these triangles. We have an angle of 45 degrees at the centre and two arms extending out 10 feet.

At this point, we can use the cosine law to calculate the length of the side or we can recognize that it is an isosceles triangle and work out the other angles and determine the length of the side.

Using Cosine Law, a^2= b^2 + c^2 - 2xbxc Cos A

In this case, A = 45 degrees, b = 10 feet, c=10 feet.

Good luck.

Let me know if you have any questions.

Paul

Aug 25, 2015 | Miscellaneous

I find the easiest way to solve these is to sketch them first (I'm a visual learner;) We get a nice right-angled triangle, with the right-angle at B. The formula for the area of a triangle is 1/2 * base* height or (base * height)/2.

We can use BC or AB as the base.

If we use BC as the base, the length is 9-4 or 5. The height is 6-2 or 4.

We can now but the base and the height in the formula to figure out the area.

Good luck.

Paul

We can use BC or AB as the base.

If we use BC as the base, the length is 9-4 or 5. The height is 6-2 or 4.

We can now but the base and the height in the formula to figure out the area.

Good luck.

Paul

Mar 19, 2015 | Office Equipment & Supplies

The area of a triangle is 1/2 times base times height. A sketch of the triangle in the coordinate plane will determine how easy or hard this will be to be. From the sketch, you will see that this is a right-angled triangle with B being the right-angle. This makes it easier because we can easily determine the base and the height to use in the formula.

We can chose AB or BC to be the base, while the other will be the height. If we choose the base of AB, its length is 4, the 6 - 2. The height is 9-(-4) or 13.

We can now put the length and height into the formula to calculate the area of the triangle.

Good luck.

Paul

We can chose AB or BC to be the base, while the other will be the height. If we choose the base of AB, its length is 4, the 6 - 2. The height is 9-(-4) or 13.

We can now put the length and height into the formula to calculate the area of the triangle.

Good luck.

Paul

Mar 19, 2015 | Office Equipment & Supplies

The area of a triangle is 1/2 times base times height. A sketch of the triangle in the coordinate plane will determine how easy or hard this will be to be. From the sketch, you will see that this is a right-angled triangle with B being the right-angle. This makes it easier because we can easily determine the base and the height to use in the formula.

We can chose AB or BC to be the base, while the other will be the height. If we choose the base of AB, its length is 4, the 6 - 2. The height is 9-(-4) or 13.

We can now put the length and height into the formula to calculate the area of the triangle.

Good luck.

Paul

We can chose AB or BC to be the base, while the other will be the height. If we choose the base of AB, its length is 4, the 6 - 2. The height is 9-(-4) or 13.

We can now put the length and height into the formula to calculate the area of the triangle.

Good luck.

Paul

Mar 19, 2015 | Office Equipment & Supplies

About 146 and a half degrees.

If this is homework, be sure to show your work.

If this is homework, be sure to show your work.

Oct 22, 2013 | Office Equipment & Supplies

I presume that x is the measure in degrees of the third angle. Use the fact the sum of the interior angle of a triangle is equal to 180 degrees.

x+128+37=180

x+165=180

x=180-165=15 degrees.

x+128+37=180

x+165=180

x=180-165=15 degrees.

Sep 16, 2013 | Office Equipment & Supplies

Yes, there is shortcut because this is right triangle, so you can use Pythagorean theorem (see picture).

If this was helpful please rate 4 thumbs :)

- Length of hypotenuse is square root of sum of squares of lengths of other two sides of triangle, which is equal to square root of 30^2+10^2=31.6 cm.
- Sin(a)=longer cathetus/hypotenuse=0.949 so a=arcsin(0.949)=71.6 degrees
- Finally b=90-a=18.4 degrees.

If this was helpful please rate 4 thumbs :)

Sep 05, 2011 | Texas Instruments TI-30XA Calculator

Hello,

That habit of TI, Casio, and Sharp to label the inverse trigonometric functions with the -1 superscript can cause confusions.

Hope it helps

That habit of TI, Casio, and Sharp to label the inverse trigonometric functions with the -1 superscript can cause confusions.

- The inverse trigonometric functions arcosine, arcsine, and arctangent (labeled by manufacturers as cos^-1, sin^-1, and tan^-1) should not be confused with the other trigonometric functions known as secant(x) =1/cos(x), cosecant(x)=1/sin(x) and cotangent(x) = 1/tan(x).
- To avoid errors in the use of the inverse trigonometric functions, one must be careful and set the angle unit to the one required by the problem at hand (degrees, or radians)
- To make the trigonometric functions really functions, their range is restricted.
- In this calculator arcosine (x) gives results between 0 and 180 degrees (if angle MODE is Degree) or between 0 and Pi radians (if angle MODE is Radian).
- The range of results for arcsine(x) and arctangent(x) is between -90 degrees and +90 degrees (if angle MODE Degree) or -Pi/2 and Pi/2 (if angle MODE is Radian)

Hope it helps

Nov 06, 2009 | Texas Instruments TI-83 Plus Calculator

inverse sine (sin^-1) gives you the angle when the opposite side length and the hypotenuse, in relation to that angle, are given. therefore, if you want to do sin^-1(x), 0<x<1 for all real triangles
ex. sin^-1(1/2) would equal 30.
if you get a decimal, then go to [Mode] and select degrees instead of radians to get angle measures instead of radians... :)

Apr 23, 2009 | Texas Instruments TI-83 Plus Calculator

399 people viewed this question

Usually answered in minutes!

I just want to know what the name of the of the joint used when two pieces of wood are joined on a 45 degree angle and both pieces of wood stays in a straight line

×