Question about Casio FX-115ES Scientific Calculator

Press AC to exit the matrix editor and enter the matrix calculation screen. From this screen you can access any matrix by pressing SHIFT [MAT] (the 4 key) and selecting "MatA", "MatB", or "MatC".

Try working through the examples in the manual and the appendix.

Posted on Jun 07, 2012

SOURCE: How much a Matric Ton

A metric Ton or Tonne is equal to a thousand kilograms 1 Metric Ton= 1000 kgs. It is a unit of the Metric System and should not have a different meaning in the UK. However the UK has its own units.

Posted on Feb 20, 2011

Hi,

a 6ya expert can help you resolve that issue over the phone in a minute or two.

best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).

click here to download the app (for users in the US for now) and get all the help you need.

goodluck!

Posted on Jan 02, 2017

The following was written for the Casio FX-991 ES. If matrix
calculations are available on your calculator you will perform them as
described below. ( I have no time to verify that the FX-991ms can
perform matrix calculations).

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrice by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Nov 07, 2012 | Casio FX991MS Scientific Calculator

The following was written for the Casio FX-991 ES. If matrix calculations are available on your calculator you will perform them as described below. ( I have no time to verify that the FX-991ms can perform matrix calculations).

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrice by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Nov 06, 2012 | Casio FX991MS Scientific Calculator

The equal sign of the TI83/84/Plus is a **relational operator **like less than , greater than, less than or equal to)** **You use it when you are **testing if two values (numbers, expressions, or matrices) are equal.**

For example, if in one your programs what you do at a certain time depends on the equality of two expressions, you test the equality by a statement :

If A=B do this action.

For example, if in one your programs what you do at a certain time depends on the equality of two expressions, you test the equality by a statement :

If A=B do this action.

Jan 30, 2012 | Texas Instruments TI-84 Plus Silver...

This
post is rather exhaustive as regards the matrix capabilities of the
calculator. So if the post recalls things you already know, please skip
them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrix by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Apr 24, 2011 | Casio FX-115ES Scientific Calculator

Here is some help. Please read both parts attentively.

TO COMPUTE STANDARD DEVIATION AND 2-VAR STATISTICS.

I assume you know the theory. I will show you the key strokes

For 1-Var statistics

Press [MODE][3:STAT] [1:1-VAR]. You are ready to enter values in the X column.

Enter a number and press [=]. Cursor jumps to second number to enter.

Keep entering numbers and pressing [=] till all numbers are in. Press the [=] key after the last one.

**Press
[AC] key to clear the screen.**

Press [SHIFT] [STAT] (above digit 1.) then [5:Var]. Screen displays the statistical variables 1:n ;2: x bar; 3: x sigma n; 4:x sigma n-1.

Press the number corresponding to the statistical value you want, ex 1:n . The variable appears on screen. Press [=] and it will be displayed.

To display another variable press [SHIFT][STAT][5:Var][ 1,2, 3, or 4] .

To access the sum of squares sigma x^2 and the sum of data sigma x press[SHIFT][STAT][4:SUM] then [1: for sigma x^2] or [2: for sigma x]. Press [SHIFT][STAT][6:MinMax] to access minX and maxX.

For 2-var statistics

To perform 2 variable statistics you press [MODE][3:STAT] and any of the other regression options (except 1:1-Var). A two column template opens where you enter the X and Y values. When finished entering data, press [SHIFT][STAT][5:Var]. to access the different statistics. As I assumed above, you should be able to recognize what each variable means.

ABOUT MATRICES

This post is rather exhaustive as regards the matrix capabilities of the calculator. So if the post recalls things you already know, please skip them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrix by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

TO COMPUTE STANDARD DEVIATION AND 2-VAR STATISTICS.

I assume you know the theory. I will show you the key strokes

For 1-Var statistics

Press [MODE][3:STAT] [1:1-VAR]. You are ready to enter values in the X column.

Enter a number and press [=]. Cursor jumps to second number to enter.

Keep entering numbers and pressing [=] till all numbers are in. Press the [=] key after the last one.

Press [SHIFT] [STAT] (above digit 1.) then [5:Var]. Screen displays the statistical variables 1:n ;2: x bar; 3: x sigma n; 4:x sigma n-1.

Press the number corresponding to the statistical value you want, ex 1:n . The variable appears on screen. Press [=] and it will be displayed.

To display another variable press [SHIFT][STAT][5:Var][ 1,2, 3, or 4] .

To access the sum of squares sigma x^2 and the sum of data sigma x press[SHIFT][STAT][4:SUM] then [1: for sigma x^2] or [2: for sigma x]. Press [SHIFT][STAT][6:MinMax] to access minX and maxX.

For 2-var statistics

To perform 2 variable statistics you press [MODE][3:STAT] and any of the other regression options (except 1:1-Var). A two column template opens where you enter the X and Y values. When finished entering data, press [SHIFT][STAT][5:Var]. to access the different statistics. As I assumed above, you should be able to recognize what each variable means.

ABOUT MATRICES

This post is rather exhaustive as regards the matrix capabilities of the calculator. So if the post recalls things you already know, please skip them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Apr 14, 2011 | Casio FX-115ES Scientific Calculator

This
post is rather exhaustive as regards the matrix capabilities of the
calculator. So if the post recalls things you already know, please skip
them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrix by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Jan 09, 2011 | Casio FX-115ES Scientific Calculator

This post is rather exhaustive as regards the matrix capabilities of the calculator. So if the post recalls things you already know, please skip them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrix by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrix to a power 2 [x2], cube [x3]

To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Dec 18, 2010 | Casio FX-115ES Scientific Calculator

Let me explain how to create matrices. (If you know how to do it, skip
to the operations on matrices, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrix by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Aug 06, 2010 | Casio FX-115ES Scientific Calculator

Let me explain how to create matrices. (If you know how to do it, skip
to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrice by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Apr 29, 2010 | Casio FX-115ES Scientific Calculator

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrice by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Mar 06, 2010 | Casio FX-115ES Scientific Calculator

328 people viewed this question

Usually answered in minutes!

I enter all the data in the matrix but don't know how to get the answer to all the data i entered. (Even after pressing all the different types of equal.) Even after going to MatAns screen.

How do you switch between matrices? I enter A then go to enter B and A is erased. This thing is hard to use.

cant solve matrix

×