Question about Matrix 226R (VPR226R) PC Desktop

Test for conistency and solve the system 2x y z=2, x-3y 2z=1, 7x-y 4z=5

Ad

Hi there,

Save hours of searching online or wasting money on unnecessary repairs by talking to a 6YA Expert who can help you resolve this issue over the phone in a minute or two.

Best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

Here's a link to this great service

Good luck!

Posted on Jan 02, 2017

Ad

You are solving for "z". First, bracket the "z" values ad combine them to get this:

17 - (4z+2z) = 13.

This breaks down to:

17 - 6z = 13

Now, subtract 17 from both sides of the equation to get the "z" value isolated and the result is:

-6z = -4 (13-17= -4)

Since both sides are negative, you can drop the signs and get this:

6z = 4

To get the value of "z", divide both sides by 6 and the result is

z = 4/6

Simplify the fraction to z = 2/3.

17 - (4z+2z) = 13.

This breaks down to:

17 - 6z = 13

Now, subtract 17 from both sides of the equation to get the "z" value isolated and the result is:

-6z = -4 (13-17= -4)

Since both sides are negative, you can drop the signs and get this:

6z = 4

To get the value of "z", divide both sides by 6 and the result is

z = 4/6

Simplify the fraction to z = 2/3.

Jan 26, 2016 | Office Equipment & Supplies

This is no linear system. You cannot solve it like that using the matrix techniques. Haven't you made a mistake in writing the equations?

If that is tryly the system you want to solve, I suggest that you make a change of variables as follows:

X=1/x , Y= 1/y, Z=1/z (it being understood that x, y, z cannot be equal to 0). You will have to exclude the values x=0, y=0, z=0

Not I am not being sloppy, X and x are different entities, same with Y and y, Z and z.

Your system becomes

**2X+3Y-1Z=26**

1X+3Y-2Z=36

2X+4Y-5Z=52

Now that is a linear system. Solve it using matrices or Cramer's rule, When you obtain X, Y, and Z, get x=1/X, y=1/y, z=1/Z

The actual implementation of the solution method will depend on the exact model of calculator you are using. Not knowing that, I cannot advise you how to do it.

If I have not made any mistakes, the results are X=-58/9,Y=106/9, Z=-32/9. And x, y, z are just the reciprocals of their namesake.

If that is tryly the system you want to solve, I suggest that you make a change of variables as follows:

X=1/x , Y= 1/y, Z=1/z (it being understood that x, y, z cannot be equal to 0). You will have to exclude the values x=0, y=0, z=0

Not I am not being sloppy, X and x are different entities, same with Y and y, Z and z.

Your system becomes

1X+3Y-2Z=36

2X+4Y-5Z=52

Now that is a linear system. Solve it using matrices or Cramer's rule, When you obtain X, Y, and Z, get x=1/X, y=1/y, z=1/Z

The actual implementation of the solution method will depend on the exact model of calculator you are using. Not knowing that, I cannot advise you how to do it.

If I have not made any mistakes, the results are X=-58/9,Y=106/9, Z=-32/9. And x, y, z are just the reciprocals of their namesake.

Dec 13, 2013 | Office Equipment & Supplies

Your calculator cannot, natively, perform 3D graphing.

Jan 28, 2013 | Texas Instruments TI-84 Plus Calculator

There is nothing to solve because you have no equation (no = sign) nor an inequality ( no <,or >.) All you can do is use distributivity to open up the parentheses , then combine like terms as follows

(2X-5)-(X-2)= 2X-5 -X+2=2X-1X+2-5=X-3

(2X-5)-(X-2)= 2X-5 -X+2=2X-1X+2-5=X-3

May 31, 2012 | Computers & Internet

You have to put the equations into matrix form first. To do this, each variable has one column in the first matrix and you fill in the co-efficients for the variables. The second matrix has one column and contains all the numbers.

{ 2 -1 1 -1} = Matrix A

{ 1 3 -2 0}

{ 3 -2 0 4}

{-1 -3 -3 -1}

{-1} = Matrix B

{-5}

{ 1}

{-6}

{x=-2} = A*(B^-1)

{y=-.2}

{z=3}

{w=1/6}

I used excel for all my calculation and a helpful tutorial can be found here. I hope this helps and have a nice day!

{ 2 -1 1 -1} = Matrix A

{ 1 3 -2 0}

{ 3 -2 0 4}

{-1 -3 -3 -1}

{-1} = Matrix B

{-5}

{ 1}

{-6}

{x=-2} = A*(B^-1)

{y=-.2}

{z=3}

{w=1/6}

I used excel for all my calculation and a helpful tutorial can be found here. I hope this helps and have a nice day!

May 05, 2011 | Computers & Internet

You did not provide a general (n) term. However, I figured it to be something involving n^2. Hence the sum to n terms can be of the form: xn^3 + yn^2 + zn. Using the partial sums: 1, 6 (1+5), and 18 (1+5+12) we can build a linear equations system:

1= x + y +z (n=1)

6 = 8x + 4y +2z (n=2, n^2=4, n^3 = 8)

18 = 27x + 9y + 3z (n=3, n^=9, n^=27)

Solving for x,y,z we get x = 1/2, y= 1/2, z =0

Hence 1+5+12+22+..+ f(n^2)= 1/2(n^3+n^2)

1= x + y +z (n=1)

6 = 8x + 4y +2z (n=2, n^2=4, n^3 = 8)

18 = 27x + 9y + 3z (n=3, n^=9, n^=27)

Solving for x,y,z we get x = 1/2, y= 1/2, z =0

Hence 1+5+12+22+..+ f(n^2)= 1/2(n^3+n^2)

Nov 04, 2010 | Refrigerators

You can solve it with following method.

5x+3y=6 2x-4y=5

So 5x=6-3y so 2[(6-3y)/5]-4y=5

So x=(6-3y)/5 so 12-6y-20y=25

so -26y=25-12

so -26y=13

so y= -(1/2)

2x-4y=5

so 2x=5+4y

so 2x=5+4(-1/2)

so 2x=(10-4)/2

so 2x=6/4

so x =3/2

The value of x=3/2 and value of y= -1/2

Let me know if you need further assistance.

Thanks for using FixYa.

5x+3y=6 2x-4y=5

So 5x=6-3y so 2[(6-3y)/5]-4y=5

So x=(6-3y)/5 so 12-6y-20y=25

so -26y=25-12

so -26y=13

so y= -(1/2)

2x-4y=5

so 2x=5+4y

so 2x=5+4(-1/2)

so 2x=(10-4)/2

so 2x=6/4

so x =3/2

The value of x=3/2 and value of y= -1/2

Let me know if you need further assistance.

Thanks for using FixYa.

Mar 03, 2010 | Office Equipment & Supplies

Hi,

This calculator does not have a Solve function or a solver. However this example of yours is very simple that you can do it by hand. If you do not mind I will show you how to solve it. Not everything needs a calculator.

You want to solve for x. OK

This calculator does not have a Solve function or a solver. However this example of yours is very simple that you can do it by hand. If you do not mind I will show you how to solve it. Not everything needs a calculator.

You want to solve for x. OK

- Start by gathering similar terms 4x-x =3x; -13+5 =-8
- Rewrite your equation as 3x+1=2x-8
- Make the +1 change side while changing its sign
- 4x+1 -1 = 2x-8 -1 or 4x=2x-9
- Make +2x on the Right hand side go to the left hand side, changing its sign in the process 4x-2x=-9 or 2x=-9
- Divide both members by 2. This gives
- x=-9/2 or -4.5 if a decimal result is required.

Dec 06, 2009 | Texas Instruments TI-30XA Calculator

Go to your matrix button and enter a "3x4" matrix.

Then enter it as follows:

-3 4 5 7

4 3 2 9

-5 5 3 -10

Then exit out and go to "2nd->matrix->math->rref(". Then press enter.

Your screen should look like this:

rref(

Then go to matrix and select your 3x4 matrix, press enter and close it with a parathesis. Your screen should look like this:

rref([A])

Press enter and the screen should say this:

1 0 0 2

0 1 0 -3

0 0 1 5

So,

x=3

y=-3

z=5

Hope this cleared up the confusion!

SJ_Sharks

Then enter it as follows:

-3 4 5 7

4 3 2 9

-5 5 3 -10

Then exit out and go to "2nd->matrix->math->rref(". Then press enter.

Your screen should look like this:

rref(

Then go to matrix and select your 3x4 matrix, press enter and close it with a parathesis. Your screen should look like this:

rref([A])

Press enter and the screen should say this:

1 0 0 2

0 1 0 -3

0 0 1 5

So,

x=3

y=-3

z=5

Hope this cleared up the confusion!

SJ_Sharks

Mar 03, 2009 | Texas Instruments TI-84 Plus Calculator

Consider the following system of **3 equations in 3 unknowns**:

*x + y = *2

**2***x + *3*y + z = *4

*x + *2*y + *2*z = *6Our goal is to transform this system into an equivalent system from which it is easy to find the solutions. We now do this step by step.
* x + y = *2

* y + z = *0

* y + *2*z = *4
*z = *4, *y = *-4, and *x =* 2*-*(*-4*)* = *6Equivalently, we say that the unique solution to this system is **(***x, y, z*) = (6, -4, 4).

- Subtract 2*(Row1) from Row2 and place the result in the second row; subtract Row1 from Row2 and place in the third row. Leave Row1 as is.

- Subtract Row2 from Row3, and place the result in row3. Leave Row1 and Row2 as they are.

Sep 17, 2008 | Belkin (F5D7230-4) Router (587009)

34 people viewed this question

Usually answered in minutes!

×