Question about 2wire Computers & Internet

1 Answer

When use igrp?

1) when use igrp?

Posted by on

Ad

1 Answer

  • Level 2:

    An expert who has achieved level 2 by getting 100 points

    MVP:

    An expert that gotĀ 5 achievements.

    Governor:

    An expert whose answer gotĀ voted for 20 times.

    Scholar:

    An expert who has written 20 answers of more than 400 characters.

  • Expert
  • 103 Answers

First the IGRP is a Cisco protocol. And there is not a magic solution. Here some Info:
The Routing Problem IGRP is intended for use in gateways connecting several networks. We assume that the networks use packet-based technology. In effect the gateways act as packet switches. When a system connected to one network wants to send a packet to a system on a different network, it addresses the packet to a gateway. If the destination is on one of the networks connected to the gateway, the gateway will forward the packet to the destination. If the destination is more distant, the gateway will forward the packet to another gateway that is closer to the destination. Gateways use routing tables to help them decide what to do with packets. Here is a simple example routing table. (Addresses used in the examples are IP addresses taken from Rutgers University. Note that the basic routing problem is similar for other protocols as well, but this description will assume that IGRP is being used for routing IP.)
Figure 1
network gateway interface
------- ------- ---------
128.6.4 none ethernet 0
128.6.5 none ethernet 1
128.6.21 128.6.4.1 ethernet 0
128.121 128.6.5.4 ethernet 1
10 128.6.5.4 ethernet 1
when use igrp? - 72465a7.gif

Posted on Jul 03, 2009

Ad

1 Suggested Answer

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi there,
Save hours of searching online or wasting money on unnecessary repairs by talking to a 6YA Expert who can help you resolve this issue over the phone in a minute or two.

Best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

Here's a link to this great service

Good luck!

Posted on Jan 02, 2017

Ad

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

How can I translate the motherboard beeps on startup


AMI Beep Codes

Beep Code Meaning
1. beep DRAM refresh failure. There is a problem in the system memory or the motherboard.
2. beeps Memory parity error. The parity circuit is not working properly.
3. beeps Base 64K RAM failure. There is a problem with the first 64K of system memory.
4. beeps system timer not operational. There is problem with the timer(s) that control functions on the motherboard.
5. beeps Processor failure. The system CPU has failed.
6. beeps Gate A20/keyboard controller failure. The keyboard IC controller has failed, preventing gate A20 from switching the processor to protect mode.
7. beeps Virtual mode exception error.
8. beeps Video memory error. The BIOS cannot write to the frame buffer memory on the video card.
9. beeps ROM checksum error. The BIOS ROM chip on the motherboard is likely faulty.
10. beeps CMOS checksum error. Something on the motherboard is causing an error when trying to interact with the CMOS.
11. beeps Bad cache memory. An error in the level 2 cache memory.

1 long beep, 2 short Failure in the video system.
1 long beep, 3 short A failure in the video system.
1 long beep, 8 short display test failure.
Continuous beeping A problem with the memory or video.
BIOS Beep Codes

Phoenix Beep Codes

Phoenix uses sequences of beeps to indicate problems. The "-" between each number below indicates a pause between each beep sequence.
For example, 1-2-3 indicates one beep, followed by a pause and three beeps. Phoenix version before 4.x use 3-beep codes, while Phoenix versions starting with 4.x use 4-beep codes.
Click here for AMI BIOS beep codes.
4-Beep Codes

Beep Code Meaning
1-1-1-3 Faulty CPU/motherboard. Verify real mode.
1-1-2-1 Faulty CPU/motherboard.
1-1-2-3 Faulty motherboard or one of its components.
1-1-3-1 Faulty motherboard or one of its components. Initialize chipset registers with initial POST values.
1-1-3-2 Faulty motherboard or one of its components.
1-1-3-3 Faulty motherboard or one of its components. Initialize CPU registers.
1-1-3-2
1-1-3-3
1-1-3-4 Failure in the first 64K of memory.
1-1-4-1 Level 2 cache error.
1-1-4-3 I/O port error.
1-2-1-1 Power management error.
1-2-1-2
1-2-1-3 Faulty motherboard or one of its components.
1-2-2-1 Keyboard controller failure.
1-2-2-3 BIOS ROM error.
1-2-3-1 System timer error.
1-2-3-3 DMA error.
1-2-4-1 IRQ controller error.
1-3-1-1 DRAM refresh error.
1-3-1-3 A20 gate failure.
1-3-2-1 Faulty motherboard or one of its components.
1-3-3-1 Extended memory error.
1-3-3-3
1-3-4-1
1-3-4-3 Error in first 1MB of system memory.
1-4-1-3
1-4-2-4 CPU error.
1-4-3-1
2-1-4-1 BIOS ROM shadow error.
1-4-3-2
1-4-3-3 Level 2 cache error.
1-4-4-1
1-4-4-2
2-1-1-1 Faulty motherboard or one of its components.
2-1-1-3
2-1-2-1 IRQ failure.
2-1-2-3 BIOS ROM error.
2-1-2-4
2-1-3-2 I/O port failure.
2-1-3-1
2-1-3-3 Video system failure.
2-1-1-3
2-1-2-1 IRQ failure.
2-1-2-3 BIOS ROM error.
2-1-2-4 I/O port failure.
2-1-4-3
2-2-1-1 Video card failure.
2-2-1-3
2-2-2-1
2-2-2-3 Keyboard controller failure.
2-2-3-1 IRQ error.
2-2-4-1 Error in first 1MB of system memory.
2-3-1-1
2-3-3-3 Extended memory failure.
2-3-2-1 Faulty motherboard or one of its components.
2-3-2-3
2-3-3-1 Level 2 cache error.
2-3-4-1
2-3-4-3 Motherboard or video card failure.
2-3-4-1
2-3-4-3
2-4-1-1 Motherboard or video card failure.
2-4-1-3 Faulty motherboard or one of its components.
2-4-2-1 RTC error.
2-4-2-3 Keyboard controller error.
2-4-4-1 IRQ error.
3-1-1-1
3-1-1-3
3-1-2-1
3-1-2-3 I/O port error.
3-1-3-1
3-1-3-3 Faulty motherboard or one of its components.
3-1-4-1
3-2-1-1
3-2-1-2 Floppy drive or hard drive failure.
3-2-1-3 Faulty motherboard or one of its components.
3-2-2-1 Keyboard controller error.
3-2-2-3
3-2-3-1
3-2-4-1 Faulty motherboard or one of its components.
3-2-4-3 IRQ error.
3-3-1-1 RTC error.
3-3-1-3 Key lock error.
3-3-3-3 Faulty motherboard or one of its components.
3-3-3-3
3-3-4-1
3-3-4-3
3-4-1-1
3-4-1-3
3-4-2-1
3-4-2-3
3-4-3-1
3-4-4-1
3-4-4-4 Faulty motherboard or one of its components.
4-1-1-1 Floppy drive or hard drive failure.
4-2-1-1
4-2-1-3
4-2-2-1 IRQ failure.
4-2-2-3
4-2-3-1
4-2-3-3
4-2-4-1 Faulty motherboard or one of its components.
4-2-4-3 Keyboard controller error.
4-3-1-3
4-3-1-4
4-3-2-1
4-3-2-2
4-3-3-1
4-3-4-1
4-3-4-3 Faulty motherboard or one of its components.
4-3-3-2
4-3-3-4 IRQ failure.
4-3-3-3
4-3-4-2 Floppy drive or hard drive failure.
3-Beep Codes
Beep Code Meaning
1-1-2 Faulty CPU/motherboard.
1-1-3 Faulty motherboard/CMOS read-write failure.
1-1-4 Faulty BIOS/BIOS ROM checksum error.
1-2-1 System timer not operational. There is a problem with the timer(s) that control functions on the motherboard.
1-2-2
1-2-3 Faulty motherboard/DMA failure.
1-3-1 Memory refresh failure.
1-3-2
1-3-3
1-3-4 Failure in the first 64K of memory.
1-4-1 Address line failure.
1-4-2 Parity RAM failure.
1-4-3 Timer failure.
1-4-4 NMI port failure.
2-_-_ Any combination of beeps after 2 indicates a failure in the first 64K of memory.
3-1-1 Master DMA failure.
3-1-2 Slave DMA failure.
3-1-3
3-1-4 Interrupt controller failure.
3-2-4 Keyboard controller failure.
3-3-1
3-3-2 CMOS error.
3-3-4 Video card failure.
3-4-1 Video card failure.
4-2-1 Timer failure.
4-2-2 CMOS shutdown failure.
4-2-3 Gate A20 failure.
4-2-4 Unexpected interrupt in protected mode.
4-3-1 RAM test failure.
4-3-3 Timer failure.
4-3-4 Time of day clock failure.
4-4-1 Serial port failure.
4-4-2 Parallel port failure.
4-4-3 Math coprocessor.

If you need further help, reach me via phone at https://www.6ya.com/expert/joel_63c670a84e9f6a97

Jul 26, 2012 | Sony VAIO PCV-RX850 (T99861067) PC Desktop

Tip

How to divide bandwidth using cisco routers


The Bandwidth command's real purpose
First, let's discuss the real purpose of the bandwidth command. In the above scenario, the questioning administrator didn't understand the true purpose of this command, incorrectly assuming instead that the network would receive the bandwidth configured with the command.
The bandwidth command is only there to communicate the speed of the interface to higher level protocols. Most of the time, a routing protocol needs to know the speed of the interface so it can choose the best route.
In the case of routing protocols, IGRP, EIGRP, and OSPF all use the bandwidth statement. However, TCP will also adjust its initial retransmission parameters based on the bandwidth configured on the interface.
OSPF uses cost as its routing metric, which it calculates using bandwidth. For example, OSPF takes 108 and divides it by the bandwidth of the interface. To calculate the cost of a full T1, OSPF divides 100,000,000 by 1,544,000, which returns an OSPF cost of 64. (Cisco routers don't use floating-point math, so they drop the numbers after the decimal.)
On the other hand, EIGRP uses the bandwidth of the link to calculate its routing metric. Here's the EIGRP metric formula:
metric = [K1*bandwidth + (K2*bandwidth)/(256 - load) + K3*delay] * [K5/(reliability + K4)] We won't try to calculate a metric in this article, but as you can see, the process definitely requires using bandwidth. In fact, due to the default K values, the only values used to calculate the EIGRP metric are bandwidth and delay.
Examples You configure the Cisco IOS bandwidth command on interfaces. Here's an example:
interface Serial0/0 bandwidth 128 ip address 1.1.1.1 255.255.255.0 This command has only one option—the bandwidth, in kilobits, of the interface.
Router(config-if)# bandwidth ? <1-10000000> Bandwidth in kilobits Router(config-if)#bandwidth There are always default bandwidth values set for each type of interface, such as the Serial interface, as shown below:
Router# show interface s0/0 Serial0/0 is administratively down, line protocol is down Hardware is PowerQUICC Serial MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, In the case of a serial interface, the default bandwidth is 1,544 K (or a full T1 circuit). However, you could have a fractional T1 circuit, and the default may be incorrect.
As you can see, setting the correct bandwidth on each interface is very important when it comes to routing protocols choosing the right router. However, no matter what you set the bandwidth command to, you won't actually get faster throughput out of any interface—the two simply aren't related.

on Apr 24, 2010 | Cisco 2610XM Router

Tip

System Beep Code Error


Beep Code Manual, Better Than Gold Techies, American Megatrends Int. & Phoenix


BIOS Beep Codes

When a computer is first turned on, or rebooted, its BIOS performs a power-on self test (POST) to test the system's hardware, checking to make sure that all of the system's hardware components are working properly. Under normal circumstances, the POST will display an error message; however, if the BIOS detects an error before it can access the video card, or if there is a problem with the video card, it will produce a series of beeps, and the pattern of the beeps indicates what kind of problem the BIOS has detected.
Because there are many brands of BIOS, there are no standard beep codes for every BIOS.

The two most-used brands are AMI (American Megatrends International) and Phoenix.

Below are listed the beep codes for AMI systems, and here are the beep codes for Phoenix systems.


AMI Beep Codes

Beep Code Meaning
1 beep DRAM refresh failure. There is a problem in the system memory or the motherboard.
2 beeps Memory parity error. The parity circuit is not working properly.
3 beeps Base 64K RAM failure. There is a problem with the first 64K of system memory.
4 beeps System timer not operational. There is problem with the timer(s) that control functions on the motherboard.
5 beeps Processor failure. The system CPU has failed.
6 beeps Gate A20/keyboard controller failure. The keyboard IC controller has failed, preventing gate A20 from switching the processor to protect mode.
7 beeps Virtual mode exception error.
8 beeps Video memory error. The BIOS cannot write to the frame buffer memory on the video card.
9 beeps ROM checksum error. The BIOS ROM chip on the motherboard is likely faulty.
10 beeps CMOS checksum error. Something on the motherboard is causing an error when trying to interact with the CMOS.
11 beeps Bad cache memory. An error in the level 2 cache memory.
1 long beep, 2 short Failure in the video system.
1 long beep, 3 short A failure has been detected in memory above 64K.
1 long beep, 8 short Display test failure.
Continuous beeping A problem with the memory or video.
BIOS Beep Codes


Phoenix Beep Codes

Phoenix uses sequences of beeps to indicate problems. The "-" between each number below indicates a pause between each beep sequence. For example, 1-2-3 indicates one beep, followed by a pause and two beeps, followed by a pause and three beeps. Phoenix version before 4.x use 3-beep codes, while Phoenix versions starting with 4.x use 4-beep codes. Click here for AMI BIOS beep codes.
4-Beep Codes
Beep Code Meaning
1-1-1-3 Faulty CPU/motherboard. Verify real mode.
1-1-2-1 Faulty CPU/motherboard.
1-1-2-3 Faulty motherboard or one of its components.
1-1-3-1 Faulty motherboard or one of its components. Initialize chipset registers with initial POST values.
1-1-3-2 Faulty motherboard or one of its components.
1-1-3-3 Faulty motherboard or one of its components. Initialize CPU registers.
1-1-3-2
1-1-3-3
1-1-3-4 Failure in the first 64K of memory.
1-1-4-1 Level 2 cache error.
1-1-4-3 I/O port error.
1-2-1-1 Power management error.
1-2-1-2
1-2-1-3 Faulty motherboard or one of its components.
1-2-2-1 Keyboard controller failure.
1-2-2-3 BIOS ROM error.
1-2-3-1 System timer error.
1-2-3-3 DMA error.
1-2-4-1 IRQ controller error.
1-3-1-1 DRAM refresh error.
1-3-1-3 A20 gate failure.
1-3-2-1 Faulty motherboard or one of its components.
1-3-3-1 Extended memory error.
1-3-3-3
1-3-4-1
1-3-4-3 Error in first 1MB of system memory.
1-4-1-3
1-4-2-4 CPU error.
1-4-3-1
2-1-4-1 BIOS ROM shadow error.
1-4-3-2
1-4-3-3 Level 2 cache error.
1-4-4-1
1-4-4-2
2-1-1-1 Faulty motherboard or one of its components.
2-1-1-3
2-1-2-1 IRQ failure.
2-1-2-3 BIOS ROM error.
2-1-2-4
2-1-3-2 I/O port failure.
2-1-3-1
2-1-3-3 Video system failure.
2-1-1-3
2-1-2-1 IRQ failure.
2-1-2-3 BIOS ROM error.
2-1-2-4 I/O port failure.
2-1-4-3
2-2-1-1 Video card failure.
2-2-1-3
2-2-2-1
2-2-2-3 Keyboard controller failure.
2-2-3-1 IRQ error.
2-2-4-1 Error in first 1MB of system memory.
2-3-1-1
2-3-3-3 Extended memory failure.
2-3-2-1 Faulty motherboard or one of its components.
2-3-2-3
2-3-3-1 Level 2 cache error.
2-3-4-1
2-3-4-3 Motherboard or video card failure.
2-3-4-1
2-3-4-3
2-4-1-1 Motherboard or video card failure.
2-4-1-3 Faulty motherboard or one of its components.
2-4-2-1 RTC error.
2-4-2-3 Keyboard controller error.
2-4-4-1 IRQ error.
3-1-1-1
3-1-1-3
3-1-2-1
3-1-2-3 I/O port error.
3-1-3-1
3-1-3-3 Faulty motherboard or one of its components.
3-1-4-1
3-2-1-1
3-2-1-2 Floppy drive or hard drive failure.
3-2-1-3 Faulty motherboard or one of its components.
3-2-2-1 Keyboard controller error.
3-2-2-3
3-2-3-1
3-2-4-1 Faulty motherboard or one of its components.
3-2-4-3 IRQ error.
3-3-1-1 RTC error.
3-3-1-3 Key lock error.
3-3-3-3 Faulty motherboard or one of its components.
3-3-3-3
3-3-4-1
3-3-4-3
3-4-1-1
3-4-1-3
3-4-2-1
3-4-2-3
3-4-3-1
3-4-4-1
3-4-4-4 Faulty motherboard or one of its components.
4-1-1-1 Floppy drive or hard drive failure.
4-2-1-1
4-2-1-3
4-2-2-1 IRQ failure.
4-2-2-3
4-2-3-1
4-2-3-3
4-2-4-1 Faulty motherboard or one of its components.
4-2-4-3 Keyboard controller error.
4-3-1-3
4-3-1-4
4-3-2-1
4-3-2-2
4-3-3-1
4-3-4-1
4-3-4-3 Faulty motherboard or one of its components.
4-3-3-2
4-3-3-4 IRQ failure.
4-3-3-3
4-3-4-2 Floppy drive or hard drive failure.
3-Beep Codes
Beep Code Meaning
1-1-2 Faulty CPU/motherboard.
1-1-3 Faulty motherboard/CMOS read-write failure.
1-1-4 Faulty BIOS/BIOS ROM checksum error.
1-2-1 System timer not operational. There is a problem with the timer(s) that control functions on the motherboard.
1-2-2
1-2-3 Faulty motherboard/DMA failure.
1-3-1 Memory refresh failure.
1-3-2
1-3-3
1-3-4 Failure in the first 64K of memory.
1-4-1 Address line failure.
1-4-2 Parity RAM failure.
1-4-3 Timer failure.
1-4-4 NMI port failure.
2-_-_ Any combination of beeps after 2 indicates a failure in the first 64K of memory.
3-1-1 Master DMA failure.
3-1-2 Slave DMA failure.
3-1-3
3-1-4 Interrupt controller failure.
3-2-4 Keyboard controller failure.
3-3-1
3-3-2 CMOS error.
3-3-4 Video card failure.
3-4-1 Video card failure.
4-2-1 Timer failure.
4-2-2 CMOS shutdown failure.
4-2-3 Gate A20 failure.
4-2-4 Unexpected interrupt in protected mode.
4-3-1 RAM test failure.
4-3-3 Timer failure.
4-3-4 Time of day clock failure.
4-4-1 Serial port failure.
4-4-2 Parallel port failure.
4-4-3 Math coprocessor.

on Feb 02, 2010 | Computers & Internet

1 Answer

From 1 to 10 ten been the best how good are this tv 55PP9363H/17 1 TOSHIBA 6211M15 1 SONY KFSOWE620 1 MAXENT MX26X3 1 SAMSUNG LN32BS40P8D 1 MAXENT MX26X3 1 MAXENT MX42XM11 1 SONY KDLS2VLISO...


The Samsung LN40B540P8F I would rate a 9. Only God is 10.

All the DLP sets, you can throw out

All the Older Projection sets you can throw out

I would take the rest for scrap parts.

I hope this is helpful.

Dec 18, 2010 | Philips Magnavox 51MP392H Rear Projection...

1 Answer

1 3/4 + [ (4/5 + 1/5 + 2 1/2) - (8 1/4 - 5/6 ] =


1 3/4 [ (4/5 1/5 2 1/2) - (8 1/4 - 5/6 )] = -2 1/6

How to do it:
1 3/4 [ (4/5 1/5 2 1/2) - (8 1/4 - 5/6) ] =
1 3/4 [(1 2 1/2) - (8 1/4 - 5/6) =
1 3/4 [3 1/2 - (8 1/4 - 5/6)] =
1 3/4 [3 1/2 - (33/4 - 5/6)]=
1 3/4 [3 1/2 - ((33/4*6/6) - (5/6*4/4))] =
1 3/4 [3 1/2 - ((198/24) - (20/24))]=
1 3/4 [3 1/2 - (178/24)]=
1 3/4 [7/2 - 178/24]=
1 3/4 [(7/2*12/12) - 178/24] =
1 3/4 [84/24 - 178/24] =
1 3/4 [-94/24] =
1 3/4 [-3 22/24] =
1 3/4 [-3 11/12] =
1 3/4 - 3 11/12
(7/4*3/3) - 47/12 =
21/12 - 47/12 =
-26/12 =
-2 2/12 =
-2 1/6




Sep 02, 2010 | Kitchen Ranges

Tip

Beep Code Manual


(I'm Computer Technician, I use these codes to trouble shoot hardware issues at my job. Enjoy.)

BIOS Beep Codes

When a computer is first turned on, or rebooted, it's BIOS performs a power-on self test (POST) to test the system's hardware, checking to make sure that all of the system's hardware components are working properly. Under normal circumstances, the POST will display an error message; however, if the BIOS detects an error before it can access the video card, it will produce a series of beeps, and the pattern of the beeps indicates what kind of problem the BIOS has detected. Because there are many brands of BIOS, there are no standard beep codes for every BIOS.

The two most-used brands are AMI (American Megatrends International) and Phoenix.

Below are listed the beep codes for AMI systems, and here are the beep codes for Phoenix systems.

AMI Beep Codes

Beep Code Meaning
1. beep DRAM refresh failure. There is a problem in the system memory or the motherboard.
2. beeps Memory parity error. The parity circuit is not working properly.
3. beeps Base 64K RAM failure. There is a problem with the first 64K of system memory.
4. beeps system timer not operational. There is problem with the timer(s) that control functions on the motherboard.
5. beeps Processor failure. The system CPU has failed.
6. beeps Gate A20/keyboard controller failure. The keyboard IC controller has failed, preventing gate A20 from switching the processor to protect mode.
7. beeps Virtual mode exception error.
8. beeps Video memory error. The BIOS cannot write to the frame buffer memory on the video card.
9. beeps ROM checksum error. The BIOS ROM chip on the motherboard is likely faulty.
10. beeps CMOS checksum error. Something on the motherboard is causing an error when trying to interact with the CMOS.
11. beeps Bad cache memory. An error in the level 2 cache memory.

1 long beep, 2 short Failure in the video system.
1 long beep, 3 short A failure in the video system.
1 long beep, 8 short display test failure.
Continuous beeping A problem with the memory or video.
BIOS Beep Codes

Phoenix Beep Codes

Phoenix uses sequences of beeps to indicate problems. The "-" between each number below indicates a pause between each beep sequence.
For example, 1-2-3 indicates one beep, followed by a pause and three beeps. Phoenix version before 4.x use 3-beep codes, while Phoenix versions starting with 4.x use 4-beep codes.
Click here for AMI BIOS beep codes.
4-Beep Codes

Beep Code Meaning
1-1-1-3 Faulty CPU/motherboard. Verify real mode.
1-1-2-1 Faulty CPU/motherboard.
1-1-2-3 Faulty motherboard or one of its components.
1-1-3-1 Faulty motherboard or one of its components. Initialize chipset registers with initial POST values.
1-1-3-2 Faulty motherboard or one of its components.
1-1-3-3 Faulty motherboard or one of its components. Initialize CPU registers.
1-1-3-2
1-1-3-3
1-1-3-4 Failure in the first 64K of memory.
1-1-4-1 Level 2 cache error.
1-1-4-3 I/O port error.
1-2-1-1 Power management error.
1-2-1-2
1-2-1-3 Faulty motherboard or one of its components.
1-2-2-1 Keyboard controller failure.
1-2-2-3 BIOS ROM error.
1-2-3-1 System timer error.
1-2-3-3 DMA error.
1-2-4-1 IRQ controller error.
1-3-1-1 DRAM refresh error.
1-3-1-3 A20 gate failure.
1-3-2-1 Faulty motherboard or one of its components.
1-3-3-1 Extended memory error.
1-3-3-3
1-3-4-1
1-3-4-3 Error in first 1MB of system memory.
1-4-1-3
1-4-2-4 CPU error.
1-4-3-1
2-1-4-1 BIOS ROM shadow error.
1-4-3-2
1-4-3-3 Level 2 cache error.
1-4-4-1
1-4-4-2
2-1-1-1 Faulty motherboard or one of its components.
2-1-1-3
2-1-2-1 IRQ failure.
2-1-2-3 BIOS ROM error.
2-1-2-4
2-1-3-2 I/O port failure.
2-1-3-1
2-1-3-3 Video system failure.
2-1-1-3
2-1-2-1 IRQ failure.
2-1-2-3 BIOS ROM error.
2-1-2-4 I/O port failure.
2-1-4-3
2-2-1-1 Video card failure.
2-2-1-3
2-2-2-1
2-2-2-3 Keyboard controller failure.
2-2-3-1 IRQ error.
2-2-4-1 Error in first 1MB of system memory.
2-3-1-1
2-3-3-3 Extended memory failure.
2-3-2-1 Faulty motherboard or one of its components.
2-3-2-3
2-3-3-1 Level 2 cache error.
2-3-4-1
2-3-4-3 Motherboard or video card failure.
2-3-4-1
2-3-4-3
2-4-1-1 Motherboard or video card failure.
2-4-1-3 Faulty motherboard or one of its components.
2-4-2-1 RTC error.
2-4-2-3 Keyboard controller error.
2-4-4-1 IRQ error.
3-1-1-1
3-1-1-3
3-1-2-1
3-1-2-3 I/O port error.
3-1-3-1
3-1-3-3 Faulty motherboard or one of its components.
3-1-4-1
3-2-1-1
3-2-1-2 Floppy drive or hard drive failure.
3-2-1-3 Faulty motherboard or one of its components.
3-2-2-1 Keyboard controller error.
3-2-2-3
3-2-3-1
3-2-4-1 Faulty motherboard or one of its components.
3-2-4-3 IRQ error.
3-3-1-1 RTC error.
3-3-1-3 Key lock error.
3-3-3-3 Faulty motherboard or one of its components.
3-3-3-3
3-3-4-1
3-3-4-3
3-4-1-1
3-4-1-3
3-4-2-1
3-4-2-3
3-4-3-1
3-4-4-1
3-4-4-4 Faulty motherboard or one of its components.
4-1-1-1 Floppy drive or hard drive failure.
4-2-1-1
4-2-1-3
4-2-2-1 IRQ failure.
4-2-2-3
4-2-3-1
4-2-3-3
4-2-4-1 Faulty motherboard or one of its components.
4-2-4-3 Keyboard controller error.
4-3-1-3
4-3-1-4
4-3-2-1
4-3-2-2
4-3-3-1
4-3-4-1
4-3-4-3 Faulty motherboard or one of its components.
4-3-3-2
4-3-3-4 IRQ failure.
4-3-3-3
4-3-4-2 Floppy drive or hard drive failure.
3-Beep Codes
Beep Code Meaning
1-1-2 Faulty CPU/motherboard.
1-1-3 Faulty motherboard/CMOS read-write failure.
1-1-4 Faulty BIOS/BIOS ROM checksum error.
1-2-1 System timer not operational. There is a problem with the timer(s) that control functions on the motherboard.
1-2-2
1-2-3 Faulty motherboard/DMA failure.
1-3-1 Memory refresh failure.
1-3-2
1-3-3
1-3-4 Failure in the first 64K of memory.
1-4-1 Address line failure.
1-4-2 Parity RAM failure.
1-4-3 Timer failure.
1-4-4 NMI port failure.
2-_-_ Any combination of beeps after 2 indicates a failure in the first 64K of memory.
3-1-1 Master DMA failure.
3-1-2 Slave DMA failure.
3-1-3
3-1-4 Interrupt controller failure.
3-2-4 Keyboard controller failure.
3-3-1
3-3-2 CMOS error.
3-3-4 Video card failure.
3-4-1 Video card failure.
4-2-1 Timer failure.
4-2-2 CMOS shutdown failure.
4-2-3 Gate A20 failure.
4-2-4 Unexpected interrupt in protected mode.
4-3-1 RAM test failure.
4-3-3 Timer failure.
4-3-4 Time of day clock failure.
4-4-1 Serial port failure.
4-4-2 Parallel port failure.
4-4-3 Math coprocessor.

Good luck!

on Dec 31, 2009 | Computers & Internet

1 Answer

Olympus C-8080 sticks at f8.0


You're confusing aperture with shutter speed but your camera is operating normally. The C-8080's smallest aperture is f8 and cannot go further.

The ranges available are:-

Wide: F2.4, F2.5, F2.8, F3.2, F3.6, F4.0, F4.5, F5.0, F5.6, F6.3, F7.1, F8.0
Tele: F3.5, F4.0, F4.5, F5.0, F5.6, F6.3, F7.1, F8.0

Shutter speeds are:-

15, 13, 10, 8, 6, 5, 4, 3.2, 2.5, 2, 1.6, 1.3, 1, 1/1.3, 1/1.6, 1/2, 1/2.5, 1/3, 1/4, 1/5, 1/6, 1/8, 1/10, 1/13, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60, 1/80, 1/100, 1/125, 1/160, 1/200, 1/250, 1/320, 1/400, 1/500, 1/640, 1/800, 1/1000, 1/1250, 1/1600, 1/2000, 1/2500, 1/3200, 1/4000 sec

I cut and pasted the above figures rather than typing them all from:-

http://www.dpreview.com/reviews/olympusc8080wz/


Jun 28, 2009 | Olympus Camedia C-8080 Wide Zoom Digital...

2 Answers

Which protocal should i use in router ?( frame relay,igrp,rip etc)


Greetings,

TCP/IP for internet connection.

What are you trying to do ?

Please give some details so that we can assist you better.


Keep us posted and thank you for using our service.
FixYa for all your troubleshooting needs.
8544096.png

Jun 19, 2008 | Computers & Internet

2 Answers

Geometric Mean


can't quite make out the detail on buttons on the image I have of your calculator but here goes.

say for example, the geometric mean of 2 × 3 × 6 × 8 is the 4th root of 288, or approximately 4.12.

enter nth root first, in this case 4 then shift then root symbol then open bracket, 2x3x6x8, close bracket then = ,
should give you 4.1195 etc

Jun 04, 2008 | Casio FX-300MS Calculator

Not finding what you are looking for?
Computers & Internet Logo

Related Topics:

131 people viewed this question

Ask a Question

Usually answered in minutes!

Top 2wire Computers & Internet Experts

Prashant M
Prashant M

Level 3 Expert

2263 Answers

Michael Galve
Michael Galve

Level 3 Expert

1269 Answers

Ron Stone

Level 2 Expert

223 Answers

Are you a 2wire Computer and Internet Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...