Question about Texas Instruments TI-89 Calculator
The Choice are. (-160123392x^6y^7) (120092544x^7y^8) (-120092544x^7y^8) (None of the preceding)
This may help:
http://en.wikipedia.org/wiki/Binomial_theorem
Rate me, thanks.
Posted on Jul 08, 2009
Hi there,
Save hours of searching online or wasting money on unnecessary repairs by talking to a 6YA Expert who can help you resolve this issue over the phone in a minute or two.
Best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.
Here's a link to this great service
Good luck!
Posted on Jan 02, 2017
Oct 08, 2014 | Office Equipment & Supplies
May 23, 2014 | Office Equipment & Supplies
Arrange each term in each binomial in order of degree from greatest to least. The degree of a binomial is the exponent attached to the term. For example, 4x^2 is a second degree term.
Multiply each term in the binomial that is being subtracted by -1 to turn it into an addition problem. For example, the problem (8x^2 + 8) - (x^2 - 2) becomes (8x^2 + 8) + (-x^2 + 2).
Combine like terms. In the example problem, the x^2 terms are combined and the constant terms are combined, yielding (8x^2 + 8) + (-x^2 + 2) = 7x^2 + 10.
Understand the F.O.I.L. method. F.O.I.L. is an acronym standing for first, outside, inside and last. It means that you multiply the first number of the first binomial by the first number of the second, then the numbers on the outside (the first term of the first binomial by the second term of the second binomial) and so on. This ensures that both numbers in the first binomial are multiplied by both numbers in the second.
Use the F.O.I.L. method to multiply the two binomials together. For example, (3x + 4)(3x - 4) = 9x^2 +12x - 12x - 16. Notice that -12x is the product of the outside terms and -16 is the product of the last terms, 4 and -4.
Simplify. There will almost always be like terms to combine. In the example, 12x and -12x cancel out, yielding the answer 9x^2 - 16.
Use the distributive property to divide both terms in the binomial by the monomial divisor. For example, (18x^3 + 9x^2) / 3x = (18x^3 / 3x) + (9x^2 / 3x).
Understand how to divide by a term. If you are dividing a higher order term by a lower order term, you subtract the exponent. For example, y^3/y = y^2. The number part of each term is handled like any other division problem. For example, 20z / 4 = 5z.
Divide each term in the binomial by the divisor; (18x^3 / 3x) + (9x^2 / 3x) = 6x^2 + 3x.
May 10, 2014 | Computers & Internet
Jan 04, 2012 | Texas Instruments TI-89 Calculator
May 03, 2011 | Texas Instruments TI-30 XIIS Calculator
Using sigma notation, and factorials for the combinatorial numbers, here is the binomial theorem:
The summation sign is the general term. Each term in the sum will look like that as you will see on my calculator display. Tthe first term having k = 0; then k = 1, k = 2, and so on, up to k = n.
Notice that the sum of the exponents (n ? k) + k, always equals n.
The summation being preformed on the Ti 89. The actual summation was preformed earlier. I just wanted to show the symbolic value of (n) in both calculations. All I need to do is drop the summation sign to the actual calculation and, fill in the term value (k), for each binomial coefficient.
This is the zero th term. x^6, when k=0. Notice how easy the calculations will be. All I'm doing is adding 1 to the value of k.
This is the first term or, first coefficient 6*x^5*y, when k=1.
Solution so far = x^6+6*x^5*y
This is the 2nd term or, 2nd coefficient 15*x^4*y^2, when k=2.
Solution so far = x^6+6*x^5*y+15*x^4*y^2
This is the 3rd term or, 3rd coefficient 20*x^3*y^3, when k=3.
Solution so far = x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3
This is the 4th term or, 4th coefficient 15*x^2*y^4, when k=4.
Solution so far = x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+15*x^2*y^4
This is the 5th term or, 5th coefficient 6*x*y^5, when k=5.
Solution so far = x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+15*x^2*y^4+6*x*y^5
This is the 6th term or, 6th coefficient y^6, when k=6.
Solution so far = x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+15*x^2*y^4+6*x*y^5+y^6
Putting the coefficients together was equal or, the same as for when I used the expand command on the Ti 89.
binomial coefficient (n over k) for (x+y)^6
x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+15*x^2*y^4+6*x*y^5+y^6
Jan 04, 2011 | Texas Instruments TI-89 Calculator
Dec 04, 2010 | Yahoo Computers & Internet
Dec 01, 2008 | Bagatrix Algebra Solved! 2005 (105101) for...
Oct 12, 2008 | SoftMath Algebrator - Algebra Homework...
May 21, 2014 | Texas Instruments TI-89 Calculator
Feb 17, 2014 | Texas Instruments TI-89 Calculator
411 people viewed this question
Usually answered in minutes!
×