Question about Ingersoll Rand Electrical Supplies

Open Question

GROUNDING 50 KW PORTABLE IR GENERATOR

HOW TO PROPERLY GROUND THE GENERATOR?(WIRE SIZE/LENGTH-RUNNING 480 3P 50A) IF IN THE CITY AND CANNOT DRIVE IN A GROUND ROD?

Posted by Anonymous on

6 Suggested Answers

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi,
a 6ya expert can help you resolve that issue over the phone in a minute or two.
best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.
the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).
click here to download the app (for users in the US for now) and get all the help you need.
goodluck!

Posted on Jan 02, 2017

kleeper
  • 87 Answers

SOURCE: How to ground shielded network cable

There is no need for this shielding in most applications. There is always the consideration of ground loops that may be created, particularly, if large current RF energy is present. If you would care to read a discuss of the pertinent facts, see below.

"This message was received from Joe Gwinn of Raytheon regarding the shielding of Gigabit Ethernet links. These links run at data speeds of 1.25 x 10**9 (yes, 1.25 billion) bits per second, over two-pair, 150-ohm, balanced cabling. We use one pair for the transmit direction, and another pair for the receive direction. The 150-ohms balanced cabling has an overall shield, and here we are discussing whether to ground the shield at one end, the other, or both. Joe writes: On the matter of how to ground the shields (hardwire to ground, or through a capacitor), and ground currents melting shields, I would like to offer my experience with the care and feeding of ground loops in the shield protecting low- level signals: use a resistor, not a capacitor. Specifically, the voltage offset between chassis (green wire) grounds rarely exceeds ten volts. If one puts a hundred-ohm one-watt carbon resistor in series with the shield at either end, with the other end directly grounded to the chassis, the ground current will be limited to 0.1 amp, well within the abilities of the shield to carry. The twisted pair within the shield will still be protected from EMI etc, and a suitable differential receiver will have no difficulty handling the power frequency and harmonics 10-volt common-mode voltage. Actually, I have seen offsets of only a few volts in the laboratory, and have used ten-ohm one-watt carbon series resistors. I have seen several volts in large buildings, and in ships, so I would design for ten volts RMS. Which end should be hard grounded, and which should have the series resistor? I haven't tried this for communications signals, but my theory would be that the receiver end should be hard grounded, because it's the receiver that handles the lowest-level signal, and a zero-ohm ground is better than a 100-ohm ground. The effect may not be all that large, because shields handle high-impedance noise sources, and 100 ohms isn't much compared to those impedances, except perhaps at very high frequencies. The 100 ohm resistor could therefore be bypassed with a RF capacitor, which would be protected from ESD puncture by the 100-ohm resistor. By the way, the ground noise may be at triple the power frequency, if the user system has lots of capacitor-input 5- volt power supplies fed from the three legs of a three-phase prime power system. I have measured 2.4 volts RMS at 240 Hz in an Air Traffic Control automation system, until the green and white grounds were disentangled. The effective source impedance was about one ohm, if I recall. The waveform was pretty close to a sine wave. When it was able to drive a current through the VMEbus logic ground, the system promptly fell over. I knew I was in trouble when I saw a spark when I touched one ground to another. The tripling comes from the merger of the pulsating currents into the 5-volt power supplies in the common ground impedance. Joe Gwinn *-------------------(REPLY FROM DR. JOHNSON)--------------------* Thanks for your interest in High-Speed Digital Design. Joe, I am going to disagree with your suggestion that a shield with a resistor at one end acts as an effective EMI shield. In high-speed digital applications, it doesn't. In high-speed digital applications, a low impedance connection between the shield and the equipment chassis *at both ends* is required in order for the shield to do its job. The shield connection impedance must be low in the frequency range over which you propose for the shield to operate. The measure of shield connection efficacy for a high-speed connector is called the ground transfer impedance, or shield transfer impedance, of the connector, and it is a crucial parameter. In the example you cite, the ground transfer impedance at one end of the cable would be 100 ohms, rendering the shield useless. In low-speed applications involving high-impedance circuitry, where most of the near-field energy surrounding the conductors is in the electric field mode (as opposed to the magnetic field mode), shields need only be grounded at one end. In this case the shield acts as a Faraday cage surrounding the conductors, prevent the egress (or ingress) of electric fields. In high-speed applications involving low-impedance circuitry, most of the near-field energy surrounding the conductors is in the magnetic field mode, and for that problem, only a magnetic shield will work. That’s what the double-grounded shield provides. Grounding both ends of the shield permits high-frequency currents to circulate in the shield, which will counteract the currents flowing in the signal conductors. These counteracting currents create magnetic fields that cancel the magnetic fields emanating from the signal conductors, providing a magnetic shielding effect. For the magnetic shield to operate properly, we must provide means for current to enter (or exit) at both ends of the cable. As a result, a low-impedance connection to the chassis, operative over the frequency range of our digital signals, is required that *both* ends of our shielded cable. (See Henry Ott, “Noise Reduction Techniques in Electronic Systems”, 2nd ed., John Wiley & Sons, 1988.) There are shielding approaches that provide a low ground transfer impedance at high frequencies, while at the same time providing a much higher impedance at 60 Hz. These approaches involve the use of shields that are capacitively- coupled to the chassis. They are used where high-frequency shielding is needed, but where there is a desire to limit the circulation of 60-Hz currents. For a capacitively-coupled shield to work, the impedance of the capacitor, at the frequency of operation, must be very low. For example, if the signal wires couple to the shield through an impedance of 75 ohms (that’s another way of saying that the common-mode impedance of the cable is 75 ohms), and the shield is tied to ground through an impedance of 0.1 ohm, then we would expect to measure on the shield a voltage equal to (0.1/75) = 0.0013 times the common-mode signal voltage. The shield in this case would be giving us a 57dB shielding effectiveness. These are the specifications that our IEEE 802.3z 1000BASE-CX copper cabling groups feels are necessary to meet FCC/VDE regulations. For any shield to work in the Gigabit Ethernet application, we will therefore need a ground transfer impedance (that is the impedance between chassis and the shielded of the cable) less than about 0.1 ohms at 625 MHz. If you check the specifications for the BERG MetaGig shielded connector, it beats this specification. It provides a direct metallic connection between chassis and shield that goes all the way around the connector pins, completely enclosing the signal conductors. To achieve equivalent performance with a capacitively-coupled shield, the effective series inductance of the capacitor would have to be limited to less than about 16 PICO-henries. That small an inductance cannot be implemented in a leaded component, it would have to be a very low-inductance distributed capacitance, possibly implemented as a thin gasket distributed all the way around the connector shell, insulating the connector shell from the chassis. We have seen proposals for this type of connector, but have not seen one work in actual practice. I do not advocate the use of capacitively-coupled shields for our application because: (1) It would add complexity, (2) It hasn’t been demonstrated to work, and (3) It would not expand the range of our applications. Keep in mind that the short copper link we are discussing (P802.3z clause 39) is intended for use inside a wiring closet. It only goes 25 meters. It will be used between pieces of equipment intentionally tied to the same ground (we call out in the specification that this must be the case). Between such pieces of equipment there will be no large circulating ground currents. For longer connections, we provide other links types which do not require grounding at either end (multimode fiber, singlemode fiber, and category-5 unshielded twisted pairs). Direct grounding of the shield at both ends is the correct choice for our application. Best Regards,
Dr. Howard Johnson "

Posted on Oct 31, 2008

AlmostBob
  • 550 Answers

SOURCE: Ground rod driver

PGD 97-0603-625 (for 5/8" rod)
PGD 97-0603-750 (for 3/4" rod)

Driveze Corp.
30 Possum Circle
Norwalk, CT 06854

Tel: (800) 448-2912
Tel: (203) 853-7698
Fax: (203) 853-6317
www.drivezecorp.com

Posted on Nov 03, 2008

  • 211 Answers

SOURCE: Gas Generator SPark Problem

Hi jeff best regards savumihai7
Inside of the rubber boot,at the plug wire terminal there is a spring making connection with the ignition coil(under the flyweel).Check the connection first.Try if there is a spark.If there is not,. remove the flyweel.You will see the coil and ignition wires.Check them by mearurement.Remove the spring and the cover and under it there are breaker points(they has not to be burned).The excentric on the crankshaft open the breaker points(gap) to have spark.Also clean the armature and the magnets from flyweel.Let me know.

Posted on Dec 16, 2008

  • 6982 Answers

SOURCE: trying to find where a ground wire connects to

Wire could go to rear of cylinder head. Going from the firewall to the master cylinder really does not make much sense as that assembly is bolted to the firewall and is grounded there. Generally most systems have multiple ground points, which is why you likely don't have any problems other than finding a home for that wire. On lots of vehicles I've owned, when there was a question about reliable grounding, I ran a 12ga or heavier wire from the battery to engine, firewall, dash and fenders, independent of all factory grounds. It's overkill, but I've never had a ground problem either!

Posted on Jan 07, 2009

tjt3
  • 44 Answers

SOURCE: gfci breaker for spa

gfci's are designed to trip if they receive voltage on there ground/neutral side, therefore my vote is for Smithbrother I would say there is probably a partial short somewhere in you system.

Posted on Mar 24, 2009

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

50a surface mount, just need to know what wire go were. white, black and ground wires or see a diadram. thanks Chazz


If this is for a 50 amp 250 volt outlet, you should have 1 green screw and two brass screws. The ground/bare wire goes on the green, and the white and black go on the other two. does not matter which one is where

Feb 14, 2011 | Leviton Electrical Supplies

1 Answer

I have a 10-2 ground wire and I want to use it on the generator, but it has 4 prongs. Besides the ground which two do I use?


You really need to use a 4 wire, one with red, black, white, and a ground. 10-2 will not work properly.

Jan 08, 2011 | Coleman Powermate Subaru 5000W Portable...

1 Answer

Do you pull a ground to your new generator or just use a ground rod


Hello, an interesting question. I am not sure what your local codes state, for myself to prevent any ground currents, I would pull a #6 ground as a minimum and not install a ground post. Like I mentioned above, your local codes may or may not require a post. Be sure that you connect the ground from the generator securely to the existing ground in your existing ground system.
joe

Jan 06, 2011 | Generac Power Systems Generac 5525 20 Kw...

1 Answer

What size breaker does the sm-11 require 2-30amp or 2-60 amp?


You will need the 2-60A breakers. 11kw is 11,000 watts. Watts = voltage X Current (amperes) If we take this formula and change it around to calculate amperes it is like this. Amperes = watts / volts amperes = 11000 watts / 240 volts This is 45.8 amperes or let us say 46 amperes. The closest breaker that you have would be a 50 amp breaker 2 pole of course . 2 - 50. If you cannot get a 2 - 50 then a 2-60 is fine. I would run with a #6 copper wire, I would check with local code to verify the wire size in your area. Make sure that the unit is grounded as well. Minimum of a #10 wire, I would also check local codes as well. Enjoy the steam!

Dec 27, 2010 | Steamist 11 KW Steam Unit SM11IM

2 Answers

Does generator need to be grounded


ALL AC electric needs a ground for safety and somewhere for the excess power to go, you dont want to hook one into your house with out a ground it will just overload circuits and throw breakers with a possibility of damaging electrical appliances, all you really need for a good ground is a 2 foot rod driven into the ground about 14-16 inches, or you can just use the one already around your home

Jul 03, 2010 | McCulloch Electrical Supplies

1 Answer

My Arc Welding machine has 3 outlets for 50A, 100A and 150A. I have set it to 50A. I tested with a tester. At the 50A outlet I am getting current. But there is no arc. The ground is connected properly


1.whether it is tranformer type or Rectifiert please find. 2.If Transformer check the oil level. 2.if rectifier Please check the outlet with the meger instrument to find amps generated while you trying to weld 3.Please check earthing cable is fixed directly to the metal where you are going to weld 

Oct 04, 2009 | Welding Tools

1 Answer

Installing load panel & inlet box


The bigger lugs will tighten just fine. Go that route and it will be easy to upgrade! If it seems way large when you put the wire in, strip the wire back and double it over. The # 6 may be a bit big for the 30 amp lugs. 30 amp circuit is usually # 10.

Sep 08, 2009 | Reliance Controls 50-Amp Power Inlet Box...

3 Answers

RV Onan Emerald 1 Generator


Check all the ground wires and make sure their not broken or loose. If the wires are good next check the neg. Wire to the coil. Too check the swiitch make sure you have continuity too all the post when the switch in the on position, this requires removing the switch.

Aug 09, 2009 | Watts Onan Portable Generator - 4000 ,...

1 Answer

Electrical cable size requirement


This is an answer to your question only. The safest thing to do is hire an electrician to do it. There may be factors you don't recgonize that a skilled eye would pick up on.

The proper size wire is #4 copper or #3 Aluminum. THHN is the most common and most versatile type in conduit. a #6 ground wire is ok. Stranded pulls a lot easier than solid and do yourself a favor and buy some wire pulling lubricant just in case.
Make sure to obey all manufacturer's instructions. If you use aluminum make sure to place anti-oxidation compound or Nolox on your lugs in the panel. Please write back with anymore questions.

Mar 24, 2009 | Kohler 12 kW Emergency Power System -...

1 Answer

Combining loads


So your point is? Just make sure the wires going from your fused outlets to the 50-amp outlet plug is the size wire# 8--or #6 with ground.

Jun 02, 2008 | Heating & Cooling

Not finding what you are looking for?
Electrical Supplies Logo

Related Topics:

23 people viewed this question

Ask a Question

Usually answered in minutes!

Top Ingersoll Rand Electrical Supplies Experts

cwradio73

Level 3 Expert

1162 Answers

Tom Chichester

Level 3 Expert

33350 Answers

Rhonda Webster
Rhonda Webster

Level 3 Expert

948 Answers

Are you an Ingersoll Rand Electrical Supply Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...