Question about Casio FX-115ES Scientific Calculator

1 Answer

I get a dimension error on my screen from my matrix

I put in my matrix. I put MatA on my screen but when i put it to the -1 power it displays a dimension error.

Posted by on

1 Answer

  • Level 3:

    An expert who has achieved level 3 by getting 1000 points

    Superstar:

    An expert that got 20 achievements.

    All-Star:

    An expert that got 10 achievements.

    MVP:

    An expert that got 5 achievements.

  • Casio Master
  • 7,993 Answers

Hello,
You cannot calculate the inverse of an arbitrary matrix. It must be a square matrix (nxn) with non zero determinant. Make sure dimensions m and n are equal. (2x2), (3x3)

To calculate its determinant [Shift][MATRIX] [7:det] [SHIFT][MATRIX][3:MatA] close the right parenthesis and [=].
If determinant is different from zero then you can calculate its inverse.
If matrix MatA has already been defined, you calculate its inverse as follows;
[SHIFT][MATRIX][3:MatA] [X^-1][=]. Use the X to -1 power , the one under [MODE].
For well-behaved matrices you calculate the inverse directly without worrying about the determinant.
Hope it helps.

Posted on Sep 29, 2009

1 Suggested Answer

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi,
a 6ya expert can help you resolve that issue over the phone in a minute or two.
best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.
the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).
click here to download the app (for users in the US for now) and get all the help you need.
goodluck!

Posted on Jan 02, 2017

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

Please tell me to find out the inverse of any matrix with an example in scientific calculator


  1. Press the "Mode" key next to the "On" button.
  2. Press 6 to choose matrix
  3. Press 1 to Enter the matrix data in MatA
  4. It will ask for the Row by Column dimensions (mxn), press the corresponding key, for this example we'll use a 2x2 matrix, so press 5.
  5. Enter the data into the calculator using the arrow keys and number keys.
    The for now enter 1 0 as the matrix (press the = key after you have finished entering a number). 0 1
  6. Press the AC key once the matrix has been entered.
  7. Now press SHIFT, 4 and press 3 to select MatA
  8. "MatA" will now be displayed on your screen
  9. Press the "-1" key (just below the mode key)
  10. "MatA-1" should be on your screen, press the = key.
  11. The inverse of the matrix will be displayed.

Jul 02, 2011 | Casio FX-115ES Scientific Calculator

1 Answer

Hi my name is paul and I'm trying to get more help for Statistics, there was help for finding mean, but i can't find help for standard deviation. Also, for another professor I can't figure out, by the...


Here is some help. Please read both parts attentively.

TO COMPUTE STANDARD DEVIATION AND 2-VAR STATISTICS.

I assume you know the theory. I will show you the key strokes

For 1-Var statistics
Press [MODE][3:STAT] [1:1-VAR]. You are ready to enter values in the X column.
Enter a number and press [=]. Cursor jumps to second number to enter.
Keep entering numbers and pressing [=] till all numbers are in. Press the [=] key after the last one.
Press [AC] key to clear the screen.
Press [SHIFT] [STAT] (above digit 1.) then [5:Var]. Screen displays the statistical variables 1:n ;2: x bar; 3: x sigma n; 4:x sigma n-1.
Press the number corresponding to the statistical value you want, ex 1:n . The variable appears on screen. Press [=] and it will be displayed.
To display another variable press [SHIFT][STAT][5:Var][ 1,2, 3, or 4] .

To access the sum of squares sigma x^2 and the sum of data sigma x press[SHIFT][STAT][4:SUM] then [1: for sigma x^2] or [2: for sigma x]. Press [SHIFT][STAT][6:MinMax] to access minX and maxX.

For 2-var statistics
To perform 2 variable statistics you press [MODE][3:STAT] and any of the other regression options (except 1:1-Var). A two column template opens where you enter the X and Y values. When finished entering data, press [SHIFT][STAT][5:Var]. to access the different statistics. As I assumed above, you should be able to recognize what each variable means.

ABOUT MATRICES

This post is rather exhaustive as regards the matrix capabilities of the calculator. So if the post recalls things you already know, please skip them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)
To subtract MatA-MatB. (MUST have identical dimensions, see above)
To multiply MatAxMatB (See below for conditions on dimensions)
To raise a matrix to a power 2 [x2], cube [x3]
To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrix by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.

Apr 14, 2011 | Casio FX-115ES Scientific Calculator

1 Answer

How to do matrix multiplication


This post is rather exhaustive as regards the matrix capabilities of the calculator. So if the post recalls things you already know, please skip them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)
To subtract MatA-MatB. (MUST have identical dimensions, see above)
To multiply MatAxMatB (See below for conditions on dimensions)
To raise a matrix to a power 2 [x2], cube [x3]
To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrix by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.

Jan 09, 2011 | Casio FX-115ES Scientific Calculator

4 Answers

In casio fx-991ES, i am able not to get the matrix multiplication as well as inverse when i do so get math error.


This post is rather exhaustive as regards the matrix capabilities of the calculator. So if the post recalls things you already know, please skip them. Matrix multiplication is at the end.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)
To subtract MatA-MatB. (MUST have identical dimensions, see above)
To multiply MatAxMatB (See below for conditions on dimensions)
To raise a matrix to a power 2 [x2], cube [x3]
To obtain inverse of a SQUARE MatA already defined MatA[x-1]. The key [x-1] is the x to the power -1 key. If the determinant of a matrix is zero, the matrix is singular and its inverse does not exit.

Dimensions of matrices involved in operations must match. Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular numbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrix by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.

Dec 18, 2010 | Casio FX-115ES Scientific Calculator

1 Answer

How to use matrix in the calculator


Let me explain how to create matrices. (If you know how to do it, skip to the operations on matrices, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)
To subtract MatA-MatB. (MUST have identical dimensions, see above)
To multiply MatAxMatB (See below for conditions on dimensions)
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match.
Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrix by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.

Aug 06, 2010 | Casio FX-115ES Scientific Calculator

1 Answer

Matrix


Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)
To subtract MatA-MatB. (MUST have identical dimensions, see above)
To multiply MatAxMatB (See below for conditions on dimensions)
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match.
Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrice by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.

Apr 29, 2010 | Casio FX-115ES Scientific Calculator

1 Answer

How to multiply two matricies?


Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB
To subtract MatA-MatB
To multiply MatAxMatB
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match.
Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An mXn matrix has m rows and n columns. To perform multiplication of an kXl matrice by an mXn matrix you multiply each element in one row of the first matrix by a specific element in a column of the second matrix. This imposes a condition, namely that the number of columns of the first matrix be equal to the number of rows of the second.
Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So MatA(kXl) * MatB(mXn) is possible only if l=m
MatA(kX3) * Mat(3Xn) is possible and meaningful, but
Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second. If this condition is not satisfied, the calculator returns a dimension error. The order of the matrices in the multiplication is, shall we say, vital.

Mar 06, 2010 | Casio FX-115ES Scientific Calculator

2 Answers

How do i do a matrix problem in my casio fx 115 es, i don't get to work manual instruccions with my book problems


Hello
First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB
To subtract MatA-MatB
To multiply MatAxMatB
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match (see you textbook for the rules)

Read the appendix to your user manual, there are several exemples.
Hope helps

Oct 11, 2009 | Casio FX-115ES Scientific Calculator

1 Answer

I want to learn how to solve matrix with my calculator casio fs 115es


Hello,
I will assume you are familiar with the basic concepts of matrix algebra.

Turn calculator [ON]
Press [MODE][6:MATRIX]. Select the matrix you want: MatA, MatB, Matc
Let us assume you select 1: MatA.
MatA (mxn) sceen: there you specify the dimensions of the matrix, the number of rows, and the number of columns. Press 5 for a 2x2 matrix.
The matrix entry screen shows, a rectangle is highlighted. Enter there the a_11 coefficient, exemple 1.
1 [ENTER]. Highlight moves to a_12 ;
1 [ENTER] highlight moves to a_21
1 [ENTER] highlight moves to a_22
2 [ENTER] Highlight stays on a_22.
Matrix is defined. The values I used are arbitrary. Enter your own.

Suppose you want to calculate the determinant of MatA
Press [SHIFT][MATRIX][7:det][SHIFT][MATRIX][3:MatA] [)] [=]

Now you want to calculate the square of matA.
Press [SHIFT][MATRIX][3:MatA] [x^2][=]
A 2x2 matrix is displayed. It is MatA[^2].

If you define MatA, MatB, MatC y

Sep 24, 2009 | Casio FX-115ES Scientific Calculator

1 Answer

How to do matrix multiplication on Casio 115ES?


Hello
First you must set Matrix calculation
[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix
(mxn]. Once finished entering the matrix you clear the screen.
The operations on matrices are available by pressing [Shift][Matrix]
[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
[2:Data] enter values in a matrix
[3:MatA] access Matrix A
[4:Matb] access Matrix B
[5:MatC] access matrix C
[6:MatAns] access the Answer Matrix (the last matrix calculated)
[7:det] Calculate the determinant of a matrix already defined
[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB
To subtract MatA-MatB
To multiply MatAxMatB
To raise a matrixe to a power 2 [x2], cube [x3]
To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key
Dimensions of matrices involved in operations must match (see you textbook for the rules)

Read the appendix to your user manual, there are several exemples.
Hope helps

Sep 10, 2009 | Casio FX-115ES Scientific Calculator

Not finding what you are looking for?
Casio FX-115ES Scientific Calculator Logo

2,761 people viewed this question

Ask a Question

Usually answered in minutes!

Top Casio Office Equipment & Supplies Experts

k24674

Level 3 Expert

7993 Answers

kakima

Level 3 Expert

102366 Answers

Les Dickinson
Les Dickinson

Level 3 Expert

18391 Answers

Are you a Casio Office Equipment and Supply Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...