Question about Texas Instruments TI-83 Plus Calculator

Re: Multiplying

What you meant to type was (-3)^4. The calculator is doing 3^4, then applying the negative sign when you type it the way you did.

Posted on Sep 09, 2007

Re: Multiplying

The calculator is mathematically correct. -3 x -3 x -3 x -3 = 81

Posted on Sep 05, 2007

Let us backtrack so as to better jump.

An algebraic expression may contain one or several**algebraic terms**, separated by a plus sign or a or a minus and a sign.

Each algebraic term is the product of a constant coefficient and a power of some variable, or the powers of several variables.

Example of an algebraic term 3(x^2)(y^6)....

**If the exponents of the various powers are positive integers, the term is called a monomial. **In short no square roots, or fractionary powers of the variables appear in monomials. Thus 2/x, 3SQRT(x), or 1/x^5 are not monomials.

Finally, a polynomial is an**algebraic expression** made up of one or more monomials.

Example P(X)=(1/3)X^7-(SQRT(5)*X^4+ 16X-25 is a polynomial of degree 7 in the indeterminate/variable X

Q(X,Y)= 3(X^3)*Y^2 + 4X-5Y+10 is a polynomial of degree 5 in the variables X and Y.

An algebraic expression may contain one or several

Each algebraic term is the product of a constant coefficient and a power of some variable, or the powers of several variables.

Example of an algebraic term 3(x^2)(y^6)....

Finally, a polynomial is an

Example P(X)=(1/3)X^7-(SQRT(5)*X^4+ 16X-25 is a polynomial of degree 7 in the indeterminate/variable X

Q(X,Y)= 3(X^3)*Y^2 + 4X-5Y+10 is a polynomial of degree 5 in the variables X and Y.

Oct 01, 2014 | Calculators

The product of two negative numbers is positive.

Apr 12, 2014 | Calculators

The polynomial cannot be factored in the set of Real numbers: The roots of the polynomial equation are complex.

You should use the command**cFactor(** found under F2:Algebra> A:Complex>2:cFactor(

However, you should set the Mode Complex>Rectangular, and the EXACT/APPROXIMATE mode to Exact, otherwise your roots will be in decimal representation.

You should use the command

However, you should set the Mode Complex>Rectangular, and the EXACT/APPROXIMATE mode to Exact, otherwise your roots will be in decimal representation.

Jan 01, 2014 | Texas Instruments TI-89 Calculator

What is the question. Your calculator FX-9750 GII does not have a Computer Algebra System or CAS, so you cannot factor a polynomial.

If you want you can try to find the zeros of the polynomial function (the values of x when the function crosses the horizontal axis) either by solving P(x)=0 or by graphing y=P(x).

Once you have the approximate roots x_1, x_2, ...,x_n, you can factor out the coefficient of the leading term (the term with the highest power) and write P(x) =a_n *G(x). here a_n is the coefficient of the leading term.

G(x) can then be written as G(x)=(x-x_1)(x-x_2)*(x=x_3)...(x-x_n)

and the original polynomial will be

P(x)=a_n(x-x_1)(x-x_2)*...*(x-x_n)

Note: Here is an example of P(x) and the corresponding G(x)

P(x)=5x^3+7x^2-13x^+29

P(x)=5**(x^3+ (7/3)*x^2-(13/5)x+29/5)**

G(x)=**x^3+ (7/3)*x^2-(13/5)x+29/5**

You should keep in mind that the roots are in general complex. Not all polynomials are factorisable in the set of Real numbers.

If you want you can try to find the zeros of the polynomial function (the values of x when the function crosses the horizontal axis) either by solving P(x)=0 or by graphing y=P(x).

Once you have the approximate roots x_1, x_2, ...,x_n, you can factor out the coefficient of the leading term (the term with the highest power) and write P(x) =a_n *G(x). here a_n is the coefficient of the leading term.

G(x) can then be written as G(x)=(x-x_1)(x-x_2)*(x=x_3)...(x-x_n)

and the original polynomial will be

P(x)=a_n(x-x_1)(x-x_2)*...*(x-x_n)

Note: Here is an example of P(x) and the corresponding G(x)

P(x)=5x^3+7x^2-13x^+29

P(x)=5

G(x)=

You should keep in mind that the roots are in general complex. Not all polynomials are factorisable in the set of Real numbers.

Oct 06, 2013 | Casio FX9750GII Graphic Calculator

There are an infinite number of polynomials with those roots. Assuming you want one with the lowest degree, here are two:

x^3 - 2x^2 - 5x + 6

2x^3 - 4x^2 - 10x + 12

Since the roots of the polynomials are -2, 1, and 3, the values (x+2), (x-1), and (x-3) must be zero.

To get these polynomials, simply multiply

k * (x+2) * (x-1) * (x-3)

where k is any nonzero value.

x^3 - 2x^2 - 5x + 6

2x^3 - 4x^2 - 10x + 12

Since the roots of the polynomials are -2, 1, and 3, the values (x+2), (x-1), and (x-3) must be zero.

To get these polynomials, simply multiply

k * (x+2) * (x-1) * (x-3)

where k is any nonzero value.

Oct 03, 2011 | Texas Instruments TI-84 Plus Calculator

We can write this polynomial as:

You can see this polynomial in following picture:

Notice that it intersects x axis for x=-2, 1 and 3 (because these are roots of polynomial).

- (x-(-2))*(x-1)*(x-3)=
- (x+2)(x-1)(x-3)=
- (x+2)[x*(x-3)-1*(x-3)]=
- (x+2)*(x^2-3x-x+3)=
- (x+2)(x^2-4x+3)=
- x*(x^2-4x+3)+2*(x^2-4x+3)=
- x^3-4x^2+3x+2x^2-8x+6=
- x^3-2x^2-5x+6

You can see this polynomial in following picture:

Notice that it intersects x axis for x=-2, 1 and 3 (because these are roots of polynomial).

Oct 03, 2011 | Calculators

One way is to use the Polynomial Root Finder and Simultaneous Equation Solver app.

Press the APPS key, then select PlySmlt2 and press ENTER. Press ENTER to get past the opening screen, then select "POLY ROOT FINDER" and press ENTER. Select the order of the polynomial and other settings as desired. Press F5 (the GRAPH key) to go to the next screen. Enter the polynomial coefficients, then press F5 to solve. The next screen will show you the roots (unless you selected real roots and the polynomial doesn't have any real roots).

If you don't have the app installed, you can download it from

http://education.ti.com/educationportal/sites/US/productDetail/us_poly_83_84.html

Press the APPS key, then select PlySmlt2 and press ENTER. Press ENTER to get past the opening screen, then select "POLY ROOT FINDER" and press ENTER. Select the order of the polynomial and other settings as desired. Press F5 (the GRAPH key) to go to the next screen. Enter the polynomial coefficients, then press F5 to solve. The next screen will show you the roots (unless you selected real roots and the polynomial doesn't have any real roots).

If you don't have the app installed, you can download it from

http://education.ti.com/educationportal/sites/US/productDetail/us_poly_83_84.html

Jan 20, 2011 | Texas Instruments TI-83 Plus Calculator

Having gone over a month with no response, I assume this is no longer a problem.

Jul 11, 2010 | Texas Instruments TI-84 Plus Calculator

Hello,

Sorry, but you cannot use this calculator to factorize a general polynomial.

1. It does not know symbolic algebra.

2. It can only manipulate numbers.

However if you have polynomials of degree 2 or 3, with numerical coefficients (no letters) you can set [MODE] to equation and use the equation solver to find the real roots of 2nd degree or 3rd degree polynomials. Assuming that your polynomials have real roots (X1, X2) for the polynomial of degree 2, or (X1, X2, X3) for the polynomial of degree 3, then it is possible to write

P2(X) =a*(X-X1)(X-X2)

P3(X)= a(X-X1)(X-X2)(X-X3)

This is an approximate factorization, except if your calculator configured in MathIO, has been able to find exact roots (fractions and radicals)

where a is the coefficient of the highest degree monomial aX^2 +...

or aX^3 +....

But I have a hunch that this is not what you wanted to hear.

Good luck.

Sorry, but you cannot use this calculator to factorize a general polynomial.

1. It does not know symbolic algebra.

2. It can only manipulate numbers.

However if you have polynomials of degree 2 or 3, with numerical coefficients (no letters) you can set [MODE] to equation and use the equation solver to find the real roots of 2nd degree or 3rd degree polynomials. Assuming that your polynomials have real roots (X1, X2) for the polynomial of degree 2, or (X1, X2, X3) for the polynomial of degree 3, then it is possible to write

P2(X) =a*(X-X1)(X-X2)

P3(X)= a(X-X1)(X-X2)(X-X3)

This is an approximate factorization, except if your calculator configured in MathIO, has been able to find exact roots (fractions and radicals)

where a is the coefficient of the highest degree monomial aX^2 +...

or aX^3 +....

But I have a hunch that this is not what you wanted to hear.

Good luck.

Mar 08, 2009 | Casio fx-300ES Calculator

Hello,

Sorry, but you cannot use this calculator to factor a general polynomial.

1. It does not know symbolic algebra.

2. It can only manipulate numbers.

However if you have polynomials of degree 2 or 3, with numerical coefficients**
(no letters) **you can set [MODE] to **Equation **and use the equation solver
to find the real roots of 2nd degree or 3rd degree polynomials.
Assuming that your polynomials have real roots (X1, X2) for the
polynomial of degree 2, or (X1, X2, X3) for the polynomial of degree 3,
then it is possible to write

**P2(X) =a*(X-X1)(X-X2)**

P3(X)= a(X-X1)(X-X2)(X-X3)

where a is the coefficient of the highest degree monomial aX^2 +...

or aX^3 +....

This is an approximate factorization, except if your calculator configured in MathIO, has been able to find exact roots (fractions and radicals)

While the [MODE][5:Equation] only handles quadratic and cubic equations, the [SHIFT][SOLVE=] solver finds the roots of arbitarry expressions (not limited to polynomials). In principle you can use it to find the roots of an expression. If it is a polynomial of dgree higher that 3 you can factor it (approximately).

But I have a hunch that this is not what you wanted to hear.

Hope it helps.

Sorry, but you cannot use this calculator to factor a general polynomial.

1. It does not know symbolic algebra.

2. It can only manipulate numbers.

However if you have polynomials of degree 2 or 3, with numerical coefficients

P3(X)= a(X-X1)(X-X2)(X-X3)

where a is the coefficient of the highest degree monomial aX^2 +...

or aX^3 +....

This is an approximate factorization, except if your calculator configured in MathIO, has been able to find exact roots (fractions and radicals)

While the [MODE][5:Equation] only handles quadratic and cubic equations, the [SHIFT][SOLVE=] solver finds the roots of arbitarry expressions (not limited to polynomials). In principle you can use it to find the roots of an expression. If it is a polynomial of dgree higher that 3 you can factor it (approximately).

But I have a hunch that this is not what you wanted to hear.

Hope it helps.

Dec 09, 2008 | Casio fx-300ES Calculator

104 people viewed this question

Usually answered in minutes!

(2x2)(3x2+5x-4

×