Question about Office Equipment & Supplies

# Find the equation of a line with gradient 2 passing through the point (4,5).

Posted by on

• Level 3:

An expert who has achieved level 3 by getting 1000 points

One Above All:

The expert with highest point at the last day of the past 12 weeks.

Top Expert:

An expert who has finished #1 on the weekly Top 10 Fixya Experts Leaderboard.

Superstar:

An expert that gotÂ 20 achievements.

• Office Equip... Master

Y = 2x - 3

Posted on Jul 31, 2013

Hi there,
Save hours of searching online or wasting money on unnecessary repairs by talking to a 6YA Expert who can help you resolve this issue over the phone in a minute or two.

Best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

Here's a link to this great service

Good luck!

Posted on Jan 02, 2017

Calculate the slope (gradient) of the line as a=(y2-y1)/(x2-x1) where y2=1, y1=0, x2=0, and x1=-6. You should get a=(1-0)/(0-(-6))=1/6
The y-intercept is the y-cordinate for x=0. Its value is 1.
The equation is then y=(x/6) 1.

Posted on Oct 19, 2010

SOURCE: i knowi can find a

The general answer is no. However the calculator can be used to find the slope and the y-intercept. You write the formula for the rate of change (a) and use the calculator to calculate it. Then you use the formula to find the y-intercept.
If you have 2 points, you can use the 2 -var statistics program to find a linear regression.

Posted on Jul 06, 2011

×

my-video-file.mp4

×

## Related Questions:

### Select all of the following scenarios that can be modeled by the equation 5x+7=45

5x + 7 = 45
5x = 45 -7
5x = 38
X = 38/5 = 7 3/5 or in decimal
X = 7.6
Or this could be a straight line equation of y = mx + c
Were y = 45 m = 5 = gradient of 5. Through the point of origin c = 7 at x =0
Question not specific enough
What topic are you doing?

Feb 26, 2018 | Homework

### Y-intercept of 4 and goes through the point (2,1)

This means the line passes through (0,4) and (2,1)

So look here
http://www.mathsisfun.com/algebra/line-equation-2points.html
and plug in these values to get

(y - 4) / (x - 0) = (1 - 4) / (2 - 0)

y - 4 = - 1.5 x or y = -1.5 x + 4

Nov 05, 2014 | Office Equipment & Supplies

### Write an equation in standard form for vertex(6,1) passing through the point (4,5)

Assuming the 'standard form' is "slope-intercept", calculate the slope from the equation m = y2-y1 = 5 - 1 = 4 = -2
x2-x1 4 - 6 -2
The intercept can be found by substituting either of the two points into the equation y = mx + b
5 = (-2)4 + b
5 = (-8) + b
13 = b
(OR, using the other point, y = mx + b
1 = (-2)6 + b
1 = (-12) + b
13 = b )
Then expressing in general:
y = (-2) x + 13

Oct 10, 2014 | Computers & Internet

### Write the equation of a line parallel to the given line but passing through the given point. y=1/4x-2;(8,-1)

Being parallel to the given line, the equation of the line you are seeking has the same slope, which in this case is a=1/4.
So the equation sought is as follows
y=(1/4)x +b, where b is to be found.
To find b, use the stated fact that the line passes through the point (x=8, y=-1). All that means is that the point (8,-1) is on the line whose equation you are looking for. If it is on the line with equation y=(1/4)x+b
then its coordinates x=8, and y=-1 satisfy the relation y=(1/4)x+b. In other words, if you substitute 8 for x, and -1 for y, the equality holds true -1=(1/4)*8 +b
This gives you a way to find the initial value of the function (the y-intercept b ). Just solve -1=(1/4)*8 +b to find b.
I leave this pleasure to you.

Jan 15, 2014 | Mathsoft StudyWorks! Mathematics Deluxe...

### What is the equation of the pair of points (-5,-8) and (-3, -1)

The site seems to eat the plus signs I enter, so I will use PLUS to symbolize addition.

To find the equation of the straight line (
y = a*x PLUS b) that passes through two points P1(x1,y1) and P(x2,y2) , you need to use
1. the coordinates of the points to calculate the slope a (gradient) as a=(y2-y1)/(x2-x1)
2.
Replace the calculated value of a in the equation and write that one of the points ( P1(x1,y1) for example) satisfies the equation. In other words y1=a*x1 PLUS b.
Here y1 and x1 are known values, a has been calculated, and only b is still unknown. You can now use the equation
y1=a*x1 PLUS b to calculate b as
b=(y1-a*x1)

Example: Equation of the line through (1,5) and (3,6)

Calculate the slope (gradient) of the line as a=(y2-y1)/(x2-x1) where y2=6, y1=5, x2=3, and x1=1. You should get a=(6-5)/(3-1)=1/2
The equation is y=(1/2)x PLUS b, where b is not known yet.

To find b, substitute the coordinates of one of the points in the equation. Let us do it for (3,6).

The point (3,6) lies on the line, so 6=(1/2)*3 PLUS b.
Solve for b: 6 MINUS 3/2=b, or b=9/2=4.5
Equation is thus y=(x/2) PLUS 9/2 =(x PLUS 9)/2

I trust you can substitute you own values for (x1,y1, x2,y2) to duplicate the calculations above.

Jan 27, 2011 | Texas Instruments TI-84 Plus Calculator

### Equation of line between to points

Example: Equation of the line through (1,5) and (3,6)
Calculate the slope (gradient) of the line as a=(y2-y1)/(x2-x1) where y2=6, y1=5, x2=3, and x1=1. You should get a=(6-5)/(3-1)=1/2
The equation is y=(1/2)x PLUS b, where b is not known yet.

To find b, substitute the coordinates of one of the points in the equation. Let us do it for (3,6).

The point (3,6) lies on the line, so 6=3/2 PLUS b.
Solve for b: 6 MINUS 3/2=b, or b=9/2=4.5
Equation is thus y=(x/2) PLUS 9/2 =(x PLUS 9)/2

Jan 10, 2011 | Texas Instruments TI-84 Plus Calculator

### Can u calculate the gradient of a line?. If s how?

What you call the gradient is usually called the slope of the line. Select two points P1 and P2 on the line. Read their coordinates P1(X_1, Y_1), and P2(X_2, Y_2).
The slope of the straight line that passes through P1 and P2 is the ratio s=(Y_2-Y_1)/(X_2-X_1).

Nov 18, 2010 | Casio fx-300ES Calculator

### Find an equation of the line containing the given pair of points (1,5)and(3,6)

Calculate the slope (gradient) of the line as a=(y2-y1)/(x2-x1) where y2=6, y1=5, x2=3, and x1=1. You should get a=(6-5)/(3-1)=1/2
The equation is y=(1/2)x PLUS b, where b is not known yet.

To find b, substitute the coordinates of one of the points in the equation. Let us do it for (3,6).

The point (3,6) lies on the line, so 6=3/2 PLUS b.
Solve for b: 6 MINUS 3/2=b, or b=9/2=4.5
Equation is thus y=(x/2) PLUS 9/2 =(x PLUS 9)/2

Oct 20, 2010 | Texas Instruments TI-84 Plus Calculator

### Find an equation of the line containing the given pair of points (-6,0) and (0,1) what is the equation of the line? y=

Calculate the slope (gradient) of the line as a=(y2-y1)/(x2-x1) where y2=1, y1=0, x2=0, and x1=-6. You should get a=(1-0)/(0-(-6))=1/6
The y-intercept is the y-cordinate for x=0. Its value is 1.
The equation is then y=(x/6) 1.

Oct 18, 2010 | Texas Instruments TI-84 Plus Calculator

### Analytic geometry

assuming the question is what is the circle equation?
and if (-2,2) is the center of the circle
the equation should look like this: (x+2)^2+(Y-2)^2=R^2

And now only R is needed.

given 2x-5y+4=0 equation of line perpendicular

we can rearange the equation to be y=(2x+4)/5
from that we can see that the slope of the line is 2/5
And from the fact of perpendicular line we can say that the slope
of the radius line is -2/5.

The motivation now is to calculate the distance between the center of the circle to the cross point of the radius with the line perpendicular

For that we would calculate the radius line equation and compare it to the equation of line perpendicular

As mentioned earlier the slope of the radious line is -2/5.

So the equation is y=-2/5x+b and b can be calculated by using the center of the circle coordinates

2= - (2/5)*(-2)+b ------> b=2-4/5=1.2

Now the cross point is calculated by comparing the equations:
-(2/5)x+1.2=(2x+4)/5 --> -2x+6=2x+4 --> 4x=2 --> x=1/2 --> y=1

So the cross point is (1/2,1).

The distance between the points is calculated by the following
Formula:

R=SQR(((1/2)-(-2))^2+(2-1)^2)=SQR(2.5^2+1^2)=SQR(6.25+1)=
SQR(7.25)

Therefore the circle eq is (x+2)^2+(Y-2)^2=7.25

Oct 26, 2008 | Casio FX-115ES Scientific Calculator

## Open Questions:

#### Related Topics:

39 people viewed this question

Level 3 Expert

Level 3 Expert