Hi

I need to know how I can calculate a present value annuity factor on Sharp EL733A.

PVAF is the factor used to determine a present value of say a lease or discounted cash flow.

Can u please help?

Regards

Gerda

Ad

Hi,

A 6ya expert can help you resolve that issue over the phone in a minute or two.

Best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

The service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).

click here to download the app (for users in the US for now) and get all the help you need.

Good luck!

Posted on Jan 02, 2017

Ad

Probably they are deducting the taxes as required by law.

Jun 25, 2017 | The Computers & Internet

A=P((1-(1+r)^(-n))/r, where A is the present value of the annuity, or the amount of the loan, P is the periodic payment, r is the interest rate per period, and n is the number of periods. In this case, I assume the payments are monthly, so n would be 36. You mentioned that you already have A and P. However, solving for r algebraically is not that easy because it is in two places on the right hand side. However, you can make a table and put in interest rates to make both sides equal. Remember to multiply this answer by 12 to get the annual interest rate.

For example, if the payment is $100, and the amount of the loan is $2,766.07, and the number of periods is 36, what is the interest rate.

r Calculate Actual Difference

0.010 3010.75 2766.07 -244.68

0.011 2959.42 2766.07 -193.35

0.012 2909.33 2766.07 -143.26

0.013 2860.42 2766.07 -94.35

0.014 2812.68 2766.07 -46.61

0.015 2766.07 2766.07 0.00

0.016 2720.55 2766.07 45.52

0.017 2676.11 2766.07 89.96

You can see from the chart that the value of r of 0.015 makes the difference 0, so the periodic interest rate is 0.015 or 1.5%. We need to annualize this by multiplying by 12 and we get an annual interest rate of 18%.

Good luck,

Paul

Annuity Payment PV

For example, if the payment is $100, and the amount of the loan is $2,766.07, and the number of periods is 36, what is the interest rate.

r Calculate Actual Difference

0.010 3010.75 2766.07 -244.68

0.011 2959.42 2766.07 -193.35

0.012 2909.33 2766.07 -143.26

0.013 2860.42 2766.07 -94.35

0.014 2812.68 2766.07 -46.61

0.015 2766.07 2766.07 0.00

0.016 2720.55 2766.07 45.52

0.017 2676.11 2766.07 89.96

You can see from the chart that the value of r of 0.015 makes the difference 0, so the periodic interest rate is 0.015 or 1.5%. We need to annualize this by multiplying by 12 and we get an annual interest rate of 18%.

Good luck,

Paul

Annuity Payment PV

Aug 15, 2016 | Office Equipment & Supplies

The calculator has no application that will find the highest common divisor (or HCF) but that should not be difficult to do by hand.

Decompose the first number in prime factors. If a prime factor is repeated use the exponent notation:**That helps**

Decompose the second number in prime factors too, using the exponent notation.

Now look at the two decompositions. If a prime factor is present in both decomposition it must be in the HCD /HCF, with the smallest of the two exponents. Do that for all prime factors

Example;

(2^5)*3***(5^4)**(7^3)***11**

**(2^3)***(5^6)*(11^2)***7**

The prime factors that are present in both decompositions are

2, 5, 7, and 11

From the two decompositions select the smallest power of each

2^3, 5^4, 7, 11

The highest common divisor/Highest common factor is

**(2^3)*(5^4)*7*11**

Decompose the first number in prime factors. If a prime factor is repeated use the exponent notation:

Decompose the second number in prime factors too, using the exponent notation.

Now look at the two decompositions. If a prime factor is present in both decomposition it must be in the HCD /HCF, with the smallest of the two exponents. Do that for all prime factors

Example;

(2^5)*3*

The prime factors that are present in both decompositions are

2, 5, 7, and 11

From the two decompositions select the smallest power of each

2^3, 5^4, 7, 11

The highest common divisor/Highest common factor is

Mar 27, 2014 | Casio Office Equipment & Supplies

Neely Neel Neel Neelerson,

--> APPS

--> TVM

Viola. The initials TVM stand for Time-Value-Money; it's a widely used tool throughout financial mathematics. If you are looking to deal with annuities, bonds, present value equations, future value equations, or even certain stocks then you will want to use the TVM app within your TI-84.

When you go into that menu screen you will see about 10 input lines; and despite how you're being taught you'd be best off using only five (from a mathematical & conceptual standpoint). The backbone of the TVM is the time-zero equation of value. So, all you want to be touching is the N, I/Y, PV, PMT, and FV keys.

Background on TVM:

N = Number of intervals

I/Y = Effective Interest Rate Per Interval (5% is .05 but the computer wants it entered as 5.0)

PV = The Present Value

PMT = Recurring Payment (either deposit or withdrawal)

FV = Future Value

There are like 3 other inputs that I encourage you to ignore (in exchange for learning exactly what's going on within this application).

NOTE: You MUST make your effective interest term match your number of intervals. For example, an annuity with monthly payments for 5 years with a monthly effective interest rate of 2% would need an N value of 60 (which is 12 months per year times 5 years for a total of 60 months).

There's more that could be said, but I think this should help you find the PV of an annuity.

Go Bulls,

The Math Cheetah

411@themathcheetah.com

--> APPS

--> TVM

Viola. The initials TVM stand for Time-Value-Money; it's a widely used tool throughout financial mathematics. If you are looking to deal with annuities, bonds, present value equations, future value equations, or even certain stocks then you will want to use the TVM app within your TI-84.

When you go into that menu screen you will see about 10 input lines; and despite how you're being taught you'd be best off using only five (from a mathematical & conceptual standpoint). The backbone of the TVM is the time-zero equation of value. So, all you want to be touching is the N, I/Y, PV, PMT, and FV keys.

Background on TVM:

N = Number of intervals

I/Y = Effective Interest Rate Per Interval (5% is .05 but the computer wants it entered as 5.0)

PV = The Present Value

PMT = Recurring Payment (either deposit or withdrawal)

FV = Future Value

There are like 3 other inputs that I encourage you to ignore (in exchange for learning exactly what's going on within this application).

NOTE: You MUST make your effective interest term match your number of intervals. For example, an annuity with monthly payments for 5 years with a monthly effective interest rate of 2% would need an N value of 60 (which is 12 months per year times 5 years for a total of 60 months).

There's more that could be said, but I think this should help you find the PV of an annuity.

Go Bulls,

The Math Cheetah

411@themathcheetah.com

Mar 13, 2011 | Texas Instruments TI-84 Plus Calculator

* Welcome to fixya*

**Hello**

** **

**I have a solution for
this **

** **

**Press Ok, Accept or
replay so we may get started **

** **

**Your pre-solution is
coming up shortly **

** **

**PLEASE
REPLY OR LEAVE COMMENT TO CONFIRM YOU RECEIVED THIS EMAIL**

** **

**My name is Bruce****
**

Jan 16, 2011 | Texas Instruments BA-II Plus Calculator

You are considering buying bonds in ACBB, Inc. The bonds have a par value of $1,000 and

mature in 37 years. The annual coupon rate is 10.0% and the coupon payments are annual. If

you believe that the appropriate discount rate for the bonds is 13.0%, what is the value of the

bonds to you? (Hint: Bond value - annual pmts)

mature in 37 years. The annual coupon rate is 10.0% and the coupon payments are annual. If

you believe that the appropriate discount rate for the bonds is 13.0%, what is the value of the

bonds to you? (Hint: Bond value - annual pmts)

Sep 13, 2010 | Casio CFX 9850GB Plus Calculator

Using the calculator at http://www.ecentralcu.org/futurevalue-pp.html I get $35,065.70

Payments = $21,600 + $13,465.70 in interest.

Payments = $21,600 + $13,465.70 in interest.

Aug 27, 2009 | HP 10bII Calculator

Since you're looking for so much, it sounds like you do not have the users manual for the calculator. You can download it here:

http://safemanuals.com/user-guide-instructions-owner-manual/CASIO/FX-270W%20PLUS-_E

John

http://safemanuals.com/user-guide-instructions-owner-manual/CASIO/FX-270W%20PLUS-_E

John

Jan 19, 2009 | Office Equipment & Supplies

Hmmm, I don't think the problem is with your calculator. I'd be checking the accounting question again as I don't think you've got your annuity question structured right.

4 Year Annuity

14% Annual Interest Rate

Your contributing $4,000 per year over the next 4 years

and you already know the future value is $50,069?

You'd have to make annual payments of $11,878.93 (4 of them) at that annual interest rate to get to a future value of $50,069 (which has a present value of $43,632.24).

Are you sure that the FV isn't the trade in value at the end of the 4 years?

4 Year Annuity

14% Annual Interest Rate

Your contributing $4,000 per year over the next 4 years

and you already know the future value is $50,069?

You'd have to make annual payments of $11,878.93 (4 of them) at that annual interest rate to get to a future value of $50,069 (which has a present value of $43,632.24).

Are you sure that the FV isn't the trade in value at the end of the 4 years?

Oct 05, 2007 | Sharp SHREL738 Calculator

Jan 13, 2014 | Sharp EL-733A Calculator

Jun 07, 2012 | Sharp EL-733A Calculator

2,931 people viewed this question

Usually answered in minutes!

×