Question about Casio FX-115ES Scientific Calculator

Ad

Hi,

A 6ya expert can help you resolve that issue over the phone in a minute or two.

Best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

The service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).

click here to download the app (for users in the US for now) and get all the help you need.

Good luck!

Posted on Jan 02, 2017

Ad

SOURCE: how do i multiply to

The enclosed screen capture shows all the possible dimensions for matrices on the Casio FX-991ES. As you can see the maximum dimension of any matrix is 3. You can only create matrices with dimensions less than or equal to 3.

Posted on Dec 01, 2010

Ad

The Casio FX-570MS does not handle matrices. So you cannot create matrices, let alone invert them. Sorry.

The Casio FX115 ES handles matrices for up to 3X3 dimension. Create the matrix.Have its name displayed on the command line and press the [x^-1] (reciprocal ) key.

The Casio FX115 ES handles matrices for up to 3X3 dimension. Create the matrix.Have its name displayed on the command line and press the [x^-1] (reciprocal ) key.

Apr 16, 2014 | Casio FX-115ES Scientific Calculator

The following was written for the Casio FX-991 ES. If matrix calculations are available on your calculator you will perform them as described below. ( I have no time to verify that the FX-991ms can perform matrix calculations).

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrice by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

Let me explain how to create matrices. (If you know how to do it, skip to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB

To subtract MatA-MatB

To multiply MatAxMatB

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Nov 06, 2012 | Casio FX991MS Scientific Calculator

Sorry, this calculator can handle matrices with dimensions ranging from 1X1 up to 3X3 . To deal with 4X4 matices you need a graphing calculator such as the CASIO FX-9570G Plus, the Ti83Plus.

Oct 23, 2011 | Casio FX-115ES Scientific Calculator

Here is an account of what you can do with matrices on this scientific calculator. Certain precautions must be taken as concerns the dimensions of the matrices. Refer to your text book on matrix algebra.

On this calculator the largest matrices you can define have dimensions 3X3.

Once you have created a square matrix, for example matA.

You press [Shift][Matrix] [7:det] [SHIFT][MATRIX][3:MatA], close the parenthesis and press [ENTER].

If you have defined two similar matrices (same number of row and same number of columns) you can ADD them or subtract them. The operation keys are Plus and Minus as for any number.

To multiply you use the multiplication sign. The matrices must be compatible (mxn) multiplied by (nxk).

On this calculator the largest matrices you can define have dimensions 3X3.

- First you must set Matrix calculation: Press [MODE][6:Matrix].
- Then by entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix (mxn].
- Once finished entering the matrix you clear the screen.
- The operations on A SINGLE matrix are available by pressing [Shift][Matrix].
- The choices are

- [1:Dim] to change the dimension of a matrix (in fact redefining the matrix)
- [2:Data] enter values in a matrix
- [3:MatA] access Matrix A
- [4:MatB] access Matrix B
- [5:MatC] access matrix C
- [6:MatAns] access the Answer Matrix (the last matrix calculated)
- [7:det] Calculate the determinant of a matrix already defined
- [8:Trn] The transpose of a matrix already defined

Once you have created a square matrix, for example matA.

You press [Shift][Matrix] [7:det] [SHIFT][MATRIX][3:MatA], close the parenthesis and press [ENTER].

If you have defined two similar matrices (same number of row and same number of columns) you can ADD them or subtract them. The operation keys are Plus and Minus as for any number.

To multiply you use the multiplication sign. The matrices must be compatible (mxn) multiplied by (nxk).

Aug 10, 2011 | Casio FX-115ES Scientific Calculator

First put the calculator into matrix mode. Do this by pressing [mode]

then [5] . Insert your matrices (you have 3 that can be saved in this calculator MatA, MatB, and MatC). Press the [ac] button, this will allow you to do calculations on the matrices. From here you use the calculation keys to do your calculations. There are many calculations that this calculator can do. A couple examples are: multiplying a matrix by a constant you would type in MatA x 4 = , or you could add two matrices of the same dimension by typing in MatA + MatB =, or you could find the determinant by typing in (det (MatA)) = .

then [5] . Insert your matrices (you have 3 that can be saved in this calculator MatA, MatB, and MatC). Press the [ac] button, this will allow you to do calculations on the matrices. From here you use the calculation keys to do your calculations. There are many calculations that this calculator can do. A couple examples are: multiplying a matrix by a constant you would type in MatA x 4 = , or you could add two matrices of the same dimension by typing in MatA + MatB =, or you could find the determinant by typing in (det (MatA)) = .

Mar 17, 2011 | Casio FX-115ES Scientific Calculator

The enclosed screen capture shows all the possible dimensions for matrices on the Casio FX-991ES. As you can see the maximum dimension of any matrix is 3. You can only create matrices with dimensions less than or equal to 3.

Dec 01, 2010 | Casio FX-115ES Scientific Calculator

Let me explain how to create matrices. (If you know how to do it, skip
to the operations on matricies, at the end.)

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An**mXn **matrix has** m rows **and**
n columns**. To perform multiplication of an **kXl** matrice by
an **mXn** matrix you multiply each element in one row of the first
matrix by a specific element in a column of the second matrix. This
imposes a condition, namely that the number of columns of the first
matrix be equal to the number of rows of the second.

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So**
MatA(kXl) * MatB(mXn) is possible only if l=m**

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.** If this condition is not satisfied, the calculator
returns a dimension error**. The order of the matrices in the
multiplication is, shall we say, vital.

First you must set Matrix calculation

[MODE][6:Matrix]. Then By entering one of the numbers [1:MatA] or [2:Matb] or [3:MatC] you get to choose the dimensions of the matrix

(mxn]. Once finished entering the matrix you clear the screen.

The operations on matrices are available by pressing [Shift][Matrix]

[1:Dim] to change the dimension of a matrix (in fact redefining the matrix)

[2:Data] enter values in a matrix

[3:MatA] access Matrix A

[4:Matb] access Matrix B

[5:MatC] access matrix C

[6:MatAns] access the Answer Matrix (the last matrix calculated)

[7:det] Calculate the determinant of a matrix already defined

[8:Trn] The transpose of a matrix already defined

To add matrices MatA+MatB (MUST have identical dimensions same m and same n, m and n do not have to be the same)

To subtract MatA-MatB. (MUST have identical dimensions, see above)

To multiply MatAxMatB (See below for conditions on dimensions)

To raise a matrixe to a power 2 [x2], cube [x3]

To obtain inverse of MatA already defined MatA[x-1] [x-1] is the x to the power -1 key

Dimensions of matrices involved in operations must match.

Here is a short summary

The multiplication of structured mathematical entities (vectors, complex numbers, matrices, etc.) is different from the multiplication of unstructured (scalar) mathematical entities (regular umbers). As you well know matrix multiplication is not commutative> This has to do with the dimensions.

An

Thus, to be able to multiply a kXl matrix by am mXn matrix, the number of columns of the first (l) must be equal to the number of rows of the second (m).

So

MatA(kX3) * Mat(3Xn) is possible and meaningful, but

Mat(kX3) * Mat(nX3) may not be possible.

To get back to your calculation, make sure that the number of columns of the first matrix is equal to the number of rows of the second.

Apr 29, 2010 | Casio FX-115ES Scientific Calculator

Calculator should be in [MATRIX] MODE

Try the matrices 2X2 matrices matA [1,2,3,4] matB [5,6,7,8], Add them, subtract them, multiply them, take the square of each. If that works for these matrices, then it must be your data. Be careful with negative numbers. To enter those, you must use the change sign (-).

There is also the possibility that the instructions were misread.

Try the matrices 2X2 matrices matA [1,2,3,4] matB [5,6,7,8], Add them, subtract them, multiply them, take the square of each. If that works for these matrices, then it must be your data. Be careful with negative numbers. To enter those, you must use the change sign (-).

There is also the possibility that the instructions were misread.

Dec 14, 2009 | Casio FX-115ES Scientific Calculator

I know this is a long time ago, but i am sure someone might ask eventually this same question.For the Casio fx-115es here are the instructions:go to mode, matrix, and pick the matrix you want to you.. you only have 3 options.create your matrix and press AC.Here is the tricky part, DO NOT go to mode again, that will reset your matrices that you have entered. Instead, press shift and the number 4 key, which is also matrix, go to press 1 (DIM), chose the other matrix to enter, and you can start mult, adding, etc.Any time you want to use the entered matrices, go through the matrix function, not the mode function.

Dec 12, 2009 | Casio FX-115ES Scientific Calculator

Hello,

You should try to use the correct heading.

Press [2nd][Matrix] right arrow to [EDIT][ENTER] to create the [A]

matrix. Exemple of a 3x3 Matrix [A].

Once the matrix [A] is created you press [2nd][MATRIX] -->[MATH]

You can add similar matrices, you can multiply matrices, subbtract them, raise a matrix to a power, extract the square root, etc...

Here are the other operations you can pefrorm on matrices. Sorry I cannot go into the detail of things;A minimun of theory is needed to be able to use the commands.

You should try to use the correct heading.

Press [2nd][Matrix] right arrow to [EDIT][ENTER] to create the [A]

matrix. Exemple of a 3x3 Matrix [A].

Once the matrix [A] is created you press [2nd][MATRIX] -->[MATH]

You can add similar matrices, you can multiply matrices, subbtract them, raise a matrix to a power, extract the square root, etc...

Here are the other operations you can pefrorm on matrices. Sorry I cannot go into the detail of things;A minimun of theory is needed to be able to use the commands.

Oct 14, 2009 | Casio FX-115ES Scientific Calculator

134 people viewed this question

Usually answered in minutes!

×