Question about Casio FX-115ES Scientific Calculator

Assuming the question is what is the circle equation?

and if (-2,2) is the center of the circle

the equation should look like this: (x+2)^2+(Y-2)^2=R^2

And now only R is needed.

given 2x-5y+4=0 equation of line perpendicular

we can rearange the equation to be y=(2x+4)/5

from that we can see that the slope of the line is 2/5

And from the fact of perpendicular line we can say that the slope

of the radius line is -2/5.

The motivation now is to calculate the distance between the center of the circle to the cross point of the radius with the line perpendicular

For that we would calculate the radius line equation and compare it to the equation of line perpendicular

As mentioned earlier the slope of the radious line is -2/5.

So the equation is y=-2/5x+b and b can be calculated by using the center of the circle coordinates

2= - (2/5)*(-2)+b ------> b=2-4/5=1.2

radius equation is y=-(2/5)x+1.2

Now the cross point is calculated by comparing the equations:

-(2/5)x+1.2=(2x+4)/5 --> -2x+6=2x+4 --> 4x=2 --> x=1/2 --> y=1

So the cross point is (1/2,1).

The distance between the points is calculated by the following

Formula:

R=SQR(((1/2)-(-2))^2+(2-1)^2)=SQR(2.5^2+1^2)=SQR(6.25+1)=

SQR(7.25)

Therefore the circle eq is (x+2)^2+(Y-2)^2=7.25

Posted on Dec 15, 2008

Hi,

a 6ya expert can help you resolve that issue over the phone in a minute or two.

best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).

click here to download the app (for users in the US for now) and get all the help you need.

goodluck!

Posted on Jan 02, 2017

Let's break this down into a few parts first.

Slope intercept form is otherwise known as y = mx + b, where m is the slope and b is the y-intercept.

Perpendicular means that the two lines will intersect each other at a 90 degree angle. In math terms, their slopes will be negative reciprocals of each other.

Starting with y + 4 = 1/4(x -7), putting into slope intercept form, y = mx + b, m = 1/4 and b=-7/4 -4.

Since it is perpendicular, it must have a slope that is a negative reciprocal. The slope of the original line is 1/4, so the multiplying it -1, we get -1/4, and taking the reciprocal, we get -4. So the slope of the perpendicular line is -4.

So, y = -4x + b, but we don't know what the value of b is. To determine this, we know the point (-4,7) is on the line that we are trying to find, so we can substitute it into the equation and calculate b to make it work.

Every time we see an x we put in -4 and every time we see a y, we put in 7.

y = -4x + b

7 = -4(-4) + b

7 = 16 + b

subtract 16 from both sides

7 - 16 = 16 + b - 16

-9 = b

Now substitute this into the equation.

y = -4x + -9

Putting it into correct form, we get y = -4x - 9.

Let's check it to see if it is correct.

It has a slope of -4, so it is perpendicular to y=1/4x - 5 3/4.

Is the point (-4,7) on the line? Let's substitute it in to see if it is on the line.

Again, everywhere we see an x, we put in -4 and everywhere we see a y we put in 7.

y= -4x - 9

7 = -4 (-4) - 9

7 = 16 - 9

7 = 7

Sorry for the very long explanation, I was being overly thorough, but after you do a few of them, you will be able to knock them off in minutes.

Good luck,

Paul

Slope intercept form is otherwise known as y = mx + b, where m is the slope and b is the y-intercept.

Perpendicular means that the two lines will intersect each other at a 90 degree angle. In math terms, their slopes will be negative reciprocals of each other.

Starting with y + 4 = 1/4(x -7), putting into slope intercept form, y = mx + b, m = 1/4 and b=-7/4 -4.

Since it is perpendicular, it must have a slope that is a negative reciprocal. The slope of the original line is 1/4, so the multiplying it -1, we get -1/4, and taking the reciprocal, we get -4. So the slope of the perpendicular line is -4.

So, y = -4x + b, but we don't know what the value of b is. To determine this, we know the point (-4,7) is on the line that we are trying to find, so we can substitute it into the equation and calculate b to make it work.

Every time we see an x we put in -4 and every time we see a y, we put in 7.

y = -4x + b

7 = -4(-4) + b

7 = 16 + b

subtract 16 from both sides

7 - 16 = 16 + b - 16

-9 = b

Now substitute this into the equation.

y = -4x + -9

Putting it into correct form, we get y = -4x - 9.

Let's check it to see if it is correct.

It has a slope of -4, so it is perpendicular to y=1/4x - 5 3/4.

Is the point (-4,7) on the line? Let's substitute it in to see if it is on the line.

Again, everywhere we see an x, we put in -4 and everywhere we see a y we put in 7.

y= -4x - 9

7 = -4 (-4) - 9

7 = 16 - 9

7 = 7

Sorry for the very long explanation, I was being overly thorough, but after you do a few of them, you will be able to knock them off in minutes.

Good luck,

Paul

Apr 03, 2016 | Office Equipment & Supplies

This is best written as two separate equations:

8x+3y = -23 and 34x+ 5y = -23

Solving the first one for x:

8x = -23-3y

x = -23/8 - 3/8y

Substituting this value for x into the second equation:

34(-23/8 - 3/8y) + 5y = -23

-97.75 - (34)(.375)y + 5y = -23

-97.75 - 12.75y + 5y = -23

-97.75 -7.75y = -23

-7.75y = 97.75-23=74.75

**y **= -74.75/7.75 =** -9.645161**

Substitution back into the equation for x:

x = -23/8 - 3/8(-9.645161)

x = -2.875 + 3.616935

**x** **=.741935**

8x+3y = -23 and 34x+ 5y = -23

Solving the first one for x:

8x = -23-3y

x = -23/8 - 3/8y

Substituting this value for x into the second equation:

34(-23/8 - 3/8y) + 5y = -23

-97.75 - (34)(.375)y + 5y = -23

-97.75 - 12.75y + 5y = -23

-97.75 -7.75y = -23

-7.75y = 97.75-23=74.75

Substitution back into the equation for x:

x = -23/8 - 3/8(-9.645161)

x = -2.875 + 3.616935

Dec 12, 2014 | Bagatrix Algebra Solved! 2005 (105101) for...

First of all you equation is not one : it has nothing on the right side of the = sign. But to answer the general question let us write the equation as **50+25x-5y=0**

**X-intercept (also know as roots) There may be several**

Definition: X-intercepts are those values of the independent variable x**for which y=0**. For a straight line there con be at most 1 x-intercept.

To find the intercept, set y=0 in the equation of the line and solve for x

50+25x-5(0)=0 or 50+25x=0. The solution is** x=-(50/25)=-2**

**Y-intercept (also know as the initial value.** There can only be 1 y-intercept, otherwise the expression does not represent a function.

Definition: It is the value of the dependent variable y when x=0 (where the function crosses the y-axis

To find it, set the x-value to 0 in the equation of the line.

**50+25x-5y=0**

50+25(0)-5y=0, or 50-5y=0. The solution is**y=50/5=10**

The straight line cuts the x-axis at the point (-2, 0) and the y-axis at the point (0,10)

Definition: X-intercepts are those values of the independent variable x

To find the intercept, set y=0 in the equation of the line and solve for x

50+25x-5(0)=0 or 50+25x=0. The solution is

Definition: It is the value of the dependent variable y when x=0 (where the function crosses the y-axis

To find it, set the x-value to 0 in the equation of the line.

50+25(0)-5y=0, or 50-5y=0. The solution is

The straight line cuts the x-axis at the point (-2, 0) and the y-axis at the point (0,10)

Jan 28, 2014 | Computers & Internet

3x-7y=2 is an equation of a line. That line doesn't go through the point (6, -7) though. Are you looking for the equation of a line through the point parallel to the first line? Perpendicular?

Jun 02, 2013 | Texas Instruments TI-84 Plus Calculator

Two lines are perpendicular if they belong to the same plane and intersect (cut) one another at right angle. They make a 90 degree angle. If you are doing analytic geometry, two lines are perpendicular if the product of their slopes ia equal to -1.

Other relative positions of lines are parallel (they have the same slope/direction) or they are just secant at an angle not equal to 90 degrees.

Other relative positions of lines are parallel (they have the same slope/direction) or they are just secant at an angle not equal to 90 degrees.

Feb 03, 2012 | Office Equipment & Supplies

Calcualte the slope of the line as

a=(7-(-11))/(10-(-5))=18/15=6/5

Use the fact that the line passes through one of the two points, for example (10,7)

7=(6/5)*10+b=12+b

Obtain b as b=7-12=-5

The equation of the line in functional form is y=(6/5)x-5

Multiply everything by 5 to clear the fraction

5y=6x-25 or 0=6x-5y-25

Finally, the equation in general form (standard?) is**6x-5y-25=0**.

Check the calculation by verifying that the point (10,7) lies on the line.

6(10)-5(7)-25=60-35-25=60-60=0 CHECKed!

Check that the second point (-5,-11) lies on the line also (if you want to)

6*(-5)-5*(-11)-25=-30+55-25=0

That checks OK.

a=(7-(-11))/(10-(-5))=18/15=6/5

Use the fact that the line passes through one of the two points, for example (10,7)

7=(6/5)*10+b=12+b

Obtain b as b=7-12=-5

The equation of the line in functional form is y=(6/5)x-5

Multiply everything by 5 to clear the fraction

5y=6x-25 or 0=6x-5y-25

Finally, the equation in general form (standard?) is

Check the calculation by verifying that the point (10,7) lies on the line.

6(10)-5(7)-25=60-35-25=60-60=0 CHECKed!

Check that the second point (-5,-11) lies on the line also (if you want to)

6*(-5)-5*(-11)-25=-30+55-25=0

That checks OK.

Dec 04, 2011 | Super Tutor Pre Algebra (ESDPALG)

x-intercept (or zero of the function)

Set y=0 in the equation and solve fo x: 2x-5(0)=20 and x=20/2=10

y-intercept (initial value)

Set x= 0 in the equation and solve for y: 2(0)-5y=20 and y=20/(-5)=-4

If the equation is in the slope-intercept form y=ax+b

1. y-intercept is b

2. To get the x-intercept ( zero of the function) Set y=0=ax+b, and x=-b/a

Set y=0 in the equation and solve fo x: 2x-5(0)=20 and x=20/2=10

y-intercept (initial value)

Set x= 0 in the equation and solve for y: 2(0)-5y=20 and y=20/(-5)=-4

If the equation is in the slope-intercept form y=ax+b

1. y-intercept is b

2. To get the x-intercept ( zero of the function) Set y=0=ax+b, and x=-b/a

Aug 27, 2011 | Texas Instruments TI-84 Plus Calculator

Hello,

And they are perpendicular. But due to the finite resolution of the screen they do not appear to be. However if you had a geometry application linked with the function graphing the measurement of the angle between the lines will show that it is 90 degrees, or 1.58 rad.

This screen capture from the TI'Nspire will convince you, I hope.

Hope it helps.

And they are perpendicular. But due to the finite resolution of the screen they do not appear to be. However if you had a geometry application linked with the function graphing the measurement of the angle between the lines will show that it is 90 degrees, or 1.58 rad.

This screen capture from the TI'Nspire will convince you, I hope.

Hope it helps.

Nov 04, 2009 | Texas Instruments TI-84 Plus Silver...

nice..let's see..counts on fingers..

x=a(b)-(d-n)/z.com

x=a(b)-(d-n)/z.com

Feb 18, 2008 | Dell GX270 P4 256/40/48X/XPP/NONE...

337 people viewed this question

Usually answered in minutes!

×