Question about Computers & Internet

1 Answer

Mathematics (tan A+sin A)/(tan A-sin A)=sec A+1/secA-1

Posted by on

1 Answer

TanA+B=secA+B

Posted on Sep 12, 2008


1 Suggested Answer

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi,
a 6ya expert can help you resolve that issue over the phone in a minute or two.
best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.
the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).
click here to download the app (for users in the US for now) and get all the help you need.
goodluck!

Posted on Jan 02, 2017

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

Csc(x)cot(x)/sec(x)


csc(x)=1/sin(x)
sec(x)=1/cos(x)
csc(x)/sec(x)=(1/sin(x))*(cos(x)=cot(x)
csc(x)*cot(x)/sec(x)=(cot(x))^2=(tan(x))^(-2)

Jul 12, 2014 | Super Tutor Trigonometry (ESDTRIG) for PC

1 Answer

Use the identity tan(x/2)=sinx/1+cosx to solve for the value of tan45 degrees


tan(x/2)=sin(x)/(1+cos(x))
Setting x/2=45, means that x=90 (degrees)
But cos(90)=0 and sin(90)=1. Thus tan(45)=1/(1+0)=1.

Mar 13, 2013 | SoftMath Algebrator - Algebra Homework...

1 Answer

Cot(x) = -0.6


Let's start with a little background.

The cot(x) is also known as the cotangent(x) and it equals 1/tan(x) which equals cos(x)/sin(x). I'm showing these formulas because your calculator may not have a cot button but it will probably have buttons for tan, cos, and sin.

Your calculator may also have buttons for tan-1, cos-1 and sin-1. These are the inverse functions for tan, cos, and sin. If you enter a number and then push the tan-1 button, the result is the angle whose tangent is the entered number. For example, it you enter 1 and push the tan-1 button the answer will be 45 deg because tan (45 deg) = 1.

Now let's look at the problem, cot(x) = -0.6.
The first thing we need to know is do you want the answer in degrees or radians? Your calculator will have both modes. The default mode when you first turn it on is probably degrees. If this problem is in radians you will need to change the mode of your calculator over to radians before we start.

If cot(x) = -0.6, then tan(x) = 1/-0.6 from the formula I showed in the background section.

This means tan(x) = -1.6666666...

Now we just enter -1.66666667 and hit the tan-1 button to get the answer.

If we're operating in radians the answer is -1.0307 radians.
If we're operating in degrees the answer is -59.036 deg.

I hope this helps you out.

Dec 06, 2011 | SoftMath Algebrator - Algebra Homework...

1 Answer

Differentiate each of the following w.r.t.x; 29.sin2xsinx


Use the rule for differentiating products of functions: ()' signifies derivative
(29*sin(2X)*sin(X))'= (29)'*sin(2X)*sin(X) +29* (sin(2X))'*sin(X) +29*sin(2X)*(sin(X))'
But
  1. (29)'=0 derivative of a constant is zero
  2. (sin(2X))'=cos(2X)*(2X)'=2*cos(2X)
  3. (sin(X))'=cos(X)
Result is
(29*sin(2X)*sin(X))'= 29*2*cos(2X)*sin(X)+29*sin(2X)*cos(X)

You could also have cast your formula in the form
sin(2X)*sin(X)= 1/2[ cos(2X-X)-cos(2X+X)]=1/2[cos(X)-cos(3X)]
then calculated the derivative of
29/2*[cos(X)-cos(3X)]
which is
29/2*[-si(X) +3*sin(3X)]

The challenge for you is to prove that the two forms are equivalent
29*2*cos(2X)*sin(X)+29*sin(2X)*cos(X)=29/2*[-si(X) +3*sin(3X)]

Jun 21, 2010 | Vivendi Excel@ Mathematics Study Skills...

1 Answer

(1+cotx-cosecx)(1+tanx+secx)=2


I shall attempt :D
1) cosec A + cot A = 3
we know that (cot A)^2 + 1 = (cosec A)^2
Hence, (cosec A)^2 - (cot A)^2 = 1
thus, (cosec A + cot A) (cosec A - cot A) = 1
3 (cosec A - cot A) = 1
(cosec A - cot A) = 1/3

(cosec A - cot A) = 1/3
(cosec A + cot A) = 3
Summing them, 2 cosec A = 3 1/3
cosec A = 6 2/3 = 5/3
sin A = 0.15
Thus, cos A = sqrt (1 - (sin A)^2) = 0.989


2) Prove that (1+tan x - sec x)(1 + cot x + cosec x) =2
expand
LHS= 1 + cot x + cosec x + tan x + 1 + tan x cosec x - sec x - sec x cot x - sec x cosec x
We can calculate that
tan x cosec x = sec x (since tan x = sin x / cos x)
sec x cot x = cosec x
so the above is
LHS = 1 + cot x + cosec x + tan x + 1 + sec x - sec x - cosec x - sec x cosec x
LHS = 2 + cot x + tan x - sec x cosec x
LHS = 2 + cos x / sin x + sin x / cos x - 1 / (sin x cos x)
LHS = 2 + [{cos x}^2 + {sin x}^2 - 1] / (sin x cos x)
LHS = 2 (proved)

May 12, 2009 | ValuSoft Bible Collection (10281) for PC

1 Answer

Trigonometric identity


hi,

try to go to this page and you will find lots of ebook related to what you are looking for.

http://www.pdf-search-engine.com/identities-trigonometry--pdf.html

thanks. rate me please

Mar 22, 2009 | Computers & Internet

1 Answer

Help


sec^4X- sec^2X = 1/cot^4X + 1/cot^2X
RHS
1/cot^4X + 1/cot^2X
=1/(Cos^4X/Sin^4X) + 1/(Cos^2X/Sin^2X)
=Sin^4X/Cos^4X + Sin^2X/Cos^2X
=Sin^4X/Cos^4X + Cos^2X.Sin^2X/Cos^4X
=Sin^2X/Cos^4(Sin^2X + Cos^2X)
=Sin^2X/Cos^4X
=(1-Cos^2X)/Cos^4X
=1/Cos^4X - Cos^2X/Cos^4X
=1/Cos^4X - 1/Cos^2X
=Sec^4X - Sec^2X
=LHS

Feb 02, 2009 | Super Tutor Trigonometry (ESDTRIG) for PC

1 Answer

Trigonometry proofs


tan y/sin y = sec y; Can you sho me how to prove this?

Aug 05, 2008 | Super Tutor Trigonometry (ESDTRIG) for PC

4 Answers

Trig Identities


Change csc to 1/sin. Find a common denominator and add the two left terms.
1/sin - sin = (1 -sin^2)/sin. Rewrite formula
(1 - sin^2)/sin = cos^2/sin Divide out the /sin.
1 - sin^2 = cos^2 Rearange.
1 = cos^2 + sin^2 Yes, that's true. It's like the Pythagorean formula.

May 22, 2008 | Super Tutor Trigonometry (ESDTRIG) for PC

Not finding what you are looking for?
Computers & Internet Logo

Related Topics:

150 people viewed this question

Ask a Question

Usually answered in minutes!

Top Computers & Internet Experts

Brian Sullivan
Brian Sullivan

Level 3 Expert

27725 Answers

joecoolvette
joecoolvette

Level 3 Expert

5660 Answers

kakima

Level 3 Expert

98694 Answers

Are you a Computer and Internet Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...