Question about 1996 Lincoln Town Car

1 Answer

My air suspension compressor is still hooked up and running and I no longer have an Air Suspension System. How DO I disconnect the Compressor? Or where is the fuse to disconnect it. The Compressor runs all the time and chatters really loud.

Posted by on

1 Answer

Obviously there is a fuse in any electrical circuit

You could also just unplug the motor !!

Posted on May 22, 2011

1 Suggested Answer

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi,
a 6ya expert can help you resolve that issue over the phone in a minute or two.
best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.
the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).
click here to download the app (for users in the US for now) and get all the help you need.
goodluck!

Posted on Jan 02, 2017

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

2002 GMC Envoy Leveling system out on back passenger side. What can be done to fix it?


Would need to find out what's wrong first ! The air shock could be bad , ride hight sensor , air line could be broke etc...
The air suspension compressor assembly has the ability to detect faults and indicate the appropriate fault code via a blink code on the inflator switch LED. Is the light on ?
The air suspension compressor assembly will indicate the code when the condition that caused the code is current. In some instances the air suspension compressor assembly may set a flag that requires the ASCM to be reset. The ASCM will reset on its own after the ignition has been turned off for more than 2 1/2 hours or if the air suspension fuse has been removed with the ignition key turned off.

Perform a visual inspection checking for the following:
• Disconnected or damaged air lines.
• Disconnected or damaged air sensor link.
• Disconnected or damaged electrical harness

Trim Height Uneven or Low
Step
Action
Yes
No
Schematic Reference: Suspension Controls Schematics
1
Did you perform the Air Suspension Diagnostic System Check?
Go to Step 2
Go to Diagnostic System Check - Air Suspension
2
Did you review the Air Suspension Description and Operation?
YES - Go to Step 3
NO - Go to Air Suspension Description and Operation
3
Perform a visual inspection checking for the following:
• Disconnected or damaged air lines.
• Disconnected or damaged air sensor link.
• Disconnected or damaged electrical harness.
Did you find and correct the condition?
YES - Go to Step 9
NO - Go to Step 4
4
Cycle the rear compartment inflator switch.
Does the compressor operate?
YES - Go to Step 5
NO - Go to Inflator Inoperative
5
Check the vehicle D-height . Refer to Trim Height Specifications and Trim Height Inspection .
Are the measurements within the specified values?
YES - Go to Step 6
NO - Go to Step 7
6
Perform the air suspension air leak diagnosis. Refer to Air Suspension Air Leak Diagnosis .
Did you find and correct the condition?
YES - Go to Step 10
NO - System OK
7
Recalibrate the air suspension level sensors. Refer to Rear Air Spring Level Sensor Calibration .
Did you find and correct the condition?
YES - Go to Step 10
Go to Step 8
8
Replace the air spring sensor. Refer to Air Spring Leveling Sensor Replacement .
Did you find and correct the condition?
YES - Go to Step 10
NO - Go to Step 9
9
Subtract the Service Preferred Trim Height specification from the value obtained in step 12 of the Air Spring Leveling Sensor replacement procedure.
Add the value to the Service Preferred Trim Height specification. This is the adjusted D-Height measurement.
Repeat the Air Spring Calibration procedure using this value in place of the D-Height specification in step 7 of the Air Spring Calibration procedure.
YES - Did you find and correct the condition?
NO - Go to Step 10
--
10
Operate the system in order to verify the repair.
Did you correct the condition?
System OK
--

Jun 22, 2017 | GMC Cars & Trucks

2 Answers

1992 CROWN VICTORIA LX I REPLACED FUSES INSIDE AND UNDER HOOD FOR AIR RIDE SUSPENSION AND IT STILL WON'T AIR UP. PLEASE HELP


Air ride suspension basically works like this. you have a small air compressor and a sensor that connects between the rear axle and the under body Frame. When this sensor detects a load movement like more or less weight it turns on the air compressor to air up or opens a exhaust valve to let air out. most common problems with this system. broken or disconnected sensor. leak in the air lines between compressor and shocks. or a bad or weak compressor.

Feb 08, 2011 | 1992 Ford Crown Victoria

1 Answer

1999 Towncar - Air suspension shocks in good condition and car rides level - no idicator light is on. The car just rides way too stiff. Even the slightest bump jolts the inside (rattles change in ash...


I will check the shop manual, but the module does control ride for stiffness, increased stiffness at higher speeds, etc. If the bags are inflated, then the module cintrols how much air to allow in or out based on inputs to the module. See if you can get one from a salvage yard form a cash for clunkers car.

A dealer can run a test for fault codes in the computer. Call and ask how much for just a scan for fault codes in the air suspension module.

-----------------------------
Vehicle Dynamic Suspension The vehicle dynamic suspension consists of the following components:
  • Rear air suspension control (RAS) module (5A919)
  • Snorkel
  • Drier
  • Air compressor (5319)
  • Air suspension switch (5K761)
  • Solenoid valve (5311)
  • Air spring (5560)
  • Air suspension height sensor (5359)
  • Air line
----------------------------------------------------------------------------
Rear Air Suspension Control Module
A microprocessor controls the air suspension system. The microprocessor and its supporting hardware are contained in the rear air suspension control module. The rear air suspension control module responds to signals from various sensors in the vehicle to maintain the programmed ride height while the vehicle is either moving or stopped. The rear air suspension control module accomplishes this by opening and closing solenoid valves to control the amount of air in the air spring(s). The rear air suspension control module turns on the compressor by applying voltage through the compressor relay to inflate the air spring(s) and raise the vehicle. The rear air suspension control module opens the vent solenoid to lower the vehicle by releasing air from the air spring(s) in response to signal inputs from the air suspension height sensor(s).
Air Suspension Switch
sxg~us~en~file=ani_caut.gif~gen~ref.gif CAUTION: The air suspension switch must be turned to the OFF position when the vehicle is hoisted, jacked, towed, jump started, or raised off the ground, to avoid unnecessary operation of the system and possible damage to the air suspension system components.
The air suspension switch provides a signal to the rear air suspension control module in the ON position to activate the system to maintain the programmed vehicle height.
Air Compressor
NOTE: The compressor contains a thermal overload circuit breaker. The circuit breaker automatically resets after a cool down period and after being tripped by excessive compressor motor heat.
The air compressor assembly consists of the compressor pump, electric motor and vent solenoid (must be installed as an assembly).
Air Suspension Height Sensor
The air suspension height sensor sends signals to the air suspension control module. There are three possible conditions that the air suspension control module interprets from the signals of the air suspension height sensors. The conditions are trim height, below trim height, or above trim height.
Solenoid Valve, Air Spring
sxg~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Never rotate an air spring solenoid valve to the release slot in the air spring end cap fitting until all pressurized air has escaped from the air spring to prevent vehicle damage or personal injury.
The air spring solenoid valve allows air to enter and exit the rear air springs during height adjustment operations. The air spring solenoid valve is electrically operated and controlled by the air suspension control module.
Steering Sensor
The steering sensor provides the steering rate and position to the air suspension control module to avoid overcompensation of the air suspension during turns.
Inspection and Verification
  1. Verify the customer concern.
  1. NOTE: If the door ajar indicator is illuminated, repair the door ajar indicator. For additional information, refer to Section 413-09 .
    Visually inspect for obvious signs of mechanical and electrical damage.


Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed or crimped air line(s)
  • Incorrectly mounted, damaged or disconnected height sensor
  • Damaged air spring(s)
  • Central junction box (CJB) Fuse:
    • 8 (10A)
    • 17 (10A)
  • Battery junction box (BJB) Fuse 12 (30A)
  • Loose or corroded connectors
  • Air suspension switch
  • Damaged air spring solenoid(s)


  1. If the concern remains after the inspection, connect New Generation STAR (NGS) Tester to the data link connector (DLC) located beneath the instrument panel and select the vehicle to be tested from the NGS Tester menu. If NGS Tester does not communicate with the vehicle:
    • check that the program card is properly installed.
    • check the connections to the vehicle.
    • check the ignition switch position.
  1. If the NGS still does not communicate with the vehicle, refer to the New Generation STAR Tester manual.
  1. Carry out the DATA LINK DIAGNOSTIC TEST. If NGS Tester responds with:
    • CKT914, CKT915 or CKT70 = ALL ECUS NO RESP/NOT EQUIP. Refer to Section 418-00 .
    • NO RESP/NOT EQUIP for rear air suspension control module, go to Pinpoint Test A.
    • SYSTEM PASSED, retrieve and record the continuous diagnostic trouble codes (DTCs), erase the continuous DTCs and perform self-test diagnostics for the rear air suspension control module.
  1. If the DTCs retrieved are related to the concern, go to Rear Air Suspension Control Module Diagnostic Trouble Code (DTC) Index to continue diagnostics.
  1. If no DTCs related to the concern are retrieved, proceed to Symptom Chart to continue diagnostics.
Rear Air Suspension Control Module Diagnostic Trouble Code (DTC) Index
NOTE: If rear air suspension control module C251 is disconnected before rear air suspension control module C250, DTCs C1830, C1770, C1790 and C1795 will be retrieved and must be cleared before an accurate list of continuous DTCs can be retrieved. The DTCs C1441 and C1442 will only be retrieved when running the electronic variable orifice (EVO) functional test on NGS Tester. The DTC C1897 will only be retrieved once per ignition switch cycle.

-----------------------------------------------------------------------------------
Module —Air Suspension Control Removal
sxg~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Before performing maintenance on any air suspension components, disconnect the power to the system by turning off the air suspension switch located on the LH side of the luggage compartment to prevent vehicle damage or personal injury.
sxg~us~en~file=ani_caut.gif~gen~ref.gif CAUTION: Electronic modules are sensitive to static electrical charges. If exposed to these charges, damage may result.
  1. Turn the air suspension switch off.
  1. Disconnect the battery ground cable (14301).
  1. Pull out the lower instrument panel insulator.
    1. Remove the pushpins.
    1. Pull out the lower instrument panel insulator.
  1. Remove the lower instrument panel insulator.
    1. Disconnect the power point.
    1. Disconnect the courtesy lamp.
    1. Remove the lower instrument panel insulator.
  1. Remove the rear air suspension control module.
    1. Remove the screws.
    1. Disconnect the electrical connectors.
    1. Remove the rear air suspension control module.
Installation
  1. NOTE: When the battery is disconnected and reconnected, some abnormal drive symptoms may occur while the vehicle relearns its adaptive strategy. The vehicle may need to be driven 16 km (10 mi) or more to relearn the strategy.
    To install, reverse the removal procedure.

Jan 20, 2010 | Lincoln Town Car Cars & Trucks

3 Answers

The rear suspension air bags no work


start here

The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving condition:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) transfer case inputs, and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines, and the use of an air spring with an air spring solenoid.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed and the vehicle speed exceeds 16 km/h (10 mph).
Air Suspension Switch
The air suspension switch is located behind the RH kick panel on a mounting bracket. The switch interrupts power to the air suspension control module.
The air suspension switch supplies a signal to the air suspension control module. Without the air suspension control module receiving this signal the load leveling system is inoperative and will not react when rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • Is not interchangeable with four wheel air suspension (4WAS) compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is mounted in the engine compartment between the washer fluid bottle and headlamp (RH front corner).
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • Air drier has a single port and is not interchangeable with 4WAS compressor air drier.
  • Air drier may be replaced separately.
  • Incorporates a snorkle that may be replaced separately.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is located in the air compressor cylinder head.
  • Has a 160 psi internal relief valve.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • Is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The air springs are mounted between the axle spring seats and the frame upper spring seats.
The two air springs replace the conventional rear coil springs.
Air Suspension Height Sensor
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing of the vehicle and related components.
The air suspension control module is mounted in the passenger compartment inside the instrument panel above the radio and temperature controls.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Air Suspension Diagnostic Connector
The air suspension diagnostic connector is used to aid the technician in diagnosing the air suspension system. It is also used to vent the system of compressed air when air suspension system components need to be repaired or replaced. The air suspension diagnostic connector is located under steering column.

Oct 02, 2009 | 1998 Ford Expedition

1 Answer

How do I reconnect my 95 Crown Vic air suspension compressor?


most likely someone unhooked it due to some part being bad in the system and even possiable that the air bags have been removed and coil springs installed

Jul 15, 2017 | 1995 Ford Crown Victoria

1 Answer

How does one reconnect the air suspension


You probably have a leak in the system. Did "they" check the lines and air suspension? "They" probably disconnected the compressor to keep it from burning out from overuse. You need to fix the leak before reconnecting or the compressor will wear out very quickly.

Aug 09, 2009 | 1995 Ford Crown Victoria

3 Answers

Rear air bag suspension failure 1998 Ford EXP E.B. 2x2


this will get you started. report back on progress and we'll go from there. There is a diagnostic test that will provide codes I think. I will look.

The system consists of unique rear air springs, air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) transfer case inputs, and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines, and the use of an air spring with an air spring solenoid.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed and the vehicle speed exceeds 16 km/h (10 mph).
Air Suspension Switch
The air suspension switch is located behind the RH kick panel on a mounting bracket. The switch interrupts power to the air suspension control module.
The air suspension switch supplies a signal to the air suspension control module. Without the air suspension control module receiving this signal the load leveling system is inoperative and will not react when rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • Is not interchangeable with four wheel air suspension (4WAS) compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is mounted in the engine compartment between the washer fluid bottle and headlamp (RH front corner).
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • Air drier has a single port and is not interchangeable with 4WAS compressor air drier.
  • Air drier may be replaced separately.
  • Incorporates a snorkle that may be replaced separately.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is located in the air compressor cylinder head.
  • Has a 160 psi internal relief valve.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • Is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The air springs are mounted between the axle spring seats and the frame upper spring seats.
The two air springs replace the conventional rear coil springs.
Air Suspension Height Sensor
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing of the vehicle and related components.
The air suspension control module is mounted in the passenger compartment inside the instrument panel above the radio and temperature controls.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Solenoid Valve, Air Spring
swj~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Never rotate an air spring solenoid valve to the release slot in the end cap fitting until all pressurized air has escaped from the spring to prevent damage or injury.
The air spring solenoid:
  • allows air to enter and exit the air spring during leveling operations.
  • is electrically operated and controlled by the air suspension control module.
Air Suspension Diagnostic Connector
The air suspension diagnostic connector is used to aid the technician in diagnosing the air suspension system. It is also used to vent the system of compressed air when air suspension system components need to be repaired or replaced. The air suspension diagnostic connector is located under steering column.

Jun 01, 2009 | 1998 Ford Expedition

2 Answers

No power to rear bags its down but wont air up bags dont seem cracked unplugged connector no power I tried resetting still no power


is switch on?
The air suspension switch and bracket is mounted below the RH side of the instrument panel.

Dealer can run diagnostic test with scan tool for fault codes.
----------

The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving conditions:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed or the vehicle speed exceeds 16 km/h (10 mph).
------------------------------------
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The two air springs support the conventional rear leaf coil springs.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
------------------------------------------------------------------------
Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed or crimped air line(s)
  • Unmounted height sensor
  • Damaged air spring(s)
  • Open fuses:
    • Central junction box (CJB) Fuse 4 (15A), 6 (5A) and 20 (5A)
    • Battery junction box (BJB) Fuse 109 (50A)
  • Loose, corroded or disconnected connectors
  • Air suspension switch is in the OFF position
  • Damaged solenoid valve(s)


-----------------------------------------------------------
  • The compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.

Apr 30, 2009 | 2000 Ford Expedition

3 Answers

Rear air suspension compressor not engaging.


what year? here's 2003 rear air only info, not 4 wheel air.

you have a fuse panel in truck and 1 under hood.




Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed or crimped air line(s)
  • Unmounted height sensor
  • Damaged air spring(s)
  • Open fuses:
    • Central junction box (CJB) Fuse 4 (15A), 6 (5A) and 20 (5A)
    • Battery junction box (BJB) Fuse 109 (50A)
  • Loose, corroded or disconnected connectors
  • Air suspension switch is in the OFF position
  • Damaged solenoid valve(s)

  • compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.
  • Go To Pinpoint Test P .



----------------------------------------------------------------------------

The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.

Air Suspension Switch
The air suspension switch supplies power to the air suspension control module. Without the air suspension control module receiving this power, the load leveling system is inoperative and will not react when the rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off the air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • is a single cylinder electric motor driven unit that provides pressurized air as required.
  • is powered by a solid state relay which is controlled by the air suspension control module.
  • passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • air drier has a single port.
  • air drier may be replaced separately.
  • incorporates a snorkel that may be replaced separately.
The vent solenoid:
  • allows air to escape from the system during venting actions.
  • is part of the air compressor cylinder head.
  • has a 1,103 kPa (160 psi) internal relief valve.
  • shares a common electrical connector with the air compressor motor.
  • is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • has an O-ring seal that prevents air leakage past the valve tip.
  • opens when the air suspension control module determines lowering is required.
  • provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The two air springs support the conventional rear leaf coil springs.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Solenoid Valve, Air Spring
s2j~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Never rotate an air spring solenoid valve to the release slot in the end cap fitting until all pressurized air has escaped from the spring to prevent damage or injury.
The air spring solenoid:
  • allows air to enter and exit the air spring during leveling operations.
  • is electrically operated and controlled by the air suspension control module.
  • is only installed as a unit.

Apr 18, 2009 | 2003 Lincoln Navigator

1 Answer

99 expedition air suspension compressor runs every couple minutes


It is normal for some cycling of the compressor as the ride heights change and the compressor vents and fills air springs. Info:

Air Compressor
The air compressor:
  • Is not interchangeable with the rear air suspension (RAS) air compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, which is controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • The drier may be replaced separately.
  • The drier has dual ports and is not interchangeable with the RAS drier.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is part of the air compressor cylinder head.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air when system pressures exceed safe operating levels.
  • Has a 1792 kPa (260 psi) internal relief valve.
  • Is installed with the air compressor as a unit.
Compressor Relay
A solid state relay is used in the air suspension system for compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
The compressor solid state relay is energized by the air suspension control module to have high current flow from the battery to the compressor motor.
Control Module
NOTE: The 4WAS control module is also used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS system.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensors. A new or swapped air suspension control module requires the ride height adjustment calibration process to be performed.
A microcontroller-based electronic air suspension control module controls the air compressor motor (through a solid state relay) and all system solenoids. The air suspension control module also provides power to front and rear height sensors. The air suspension control module controls vehicle height adjustments by monitoring the two height sensors, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module is interchangeable between the RAS and 4WAS system.
The air suspension control module monitors and controls the system through a 32-pin two-way connector. The air suspension control module is keyed so that it cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.

Pressure Relief Valve
The pressure relief valve (PRV) protects the rear air suspension components by venting the system to a specific pressure in the case of a system malfunction. The system will decrease the pressure to an acceptable level to maintain vehicle height. In the normal operation mode with normal system pressure, the PRV is constantly closed and does not have any effect on the system performance or function. The PRV is replaceable without any air lines.
  1. If the concern remains after the inspection, use New Generation STAR (NGS) Tester connected to the data link connector (DLC) to retrieve continuous diagnostic trouble codes (DTCs) and to execute On-Demand Self-Test diagnostics for the air suspension control module.
    • If the On-Demand Self-Test is passed and no DTCs are retrieved, go to the Symptom Chart to continue diagnostics.
    • If DTCs are retrieved, go to Air Suspension Control Module Diagnostic Trouble Code (DTC) Index in this section.
    • If the air suspension control module cannot be accessed by NGS Tester, go to Pinpoint Test A.
Self-Test
Verify that the following conditions are met before running the On-Demand Self-Test.
  • All doors, liftgate, and liftgate glass must be closed.
  • The transmission is in PARK.
  • The BPP switch is not pressed during the test and the parking brake is not set.
  • The accelerator pedal is not pressed during the test.
  • The vehicle is not in 4L mode.
  1. Fulfill the pre-conditions.
  1. Install a battery charger for the On-Demand Self-Test to prevent battery drain.
  1. Run the air suspension On-Demand Self-Test.
  1. Record all listed DTCs.
  1. Retrieve stored DTCs.
  1. Troubleshoot any On-Demand Self-Test DTCs first.
  1. Retest and clear DTCs after repairs.

Apr 13, 2009 | 2000 Ford Expedition

Not finding what you are looking for?
1996 Lincoln Town Car Logo

210 people viewed this question

Ask a Question

Usually answered in minutes!

Top Lincoln Experts

yadayada
yadayada

Level 3 Expert

74945 Answers

fordexpert

Level 3 Expert

5467 Answers

Colin Stickland
Colin Stickland

Level 3 Expert

22095 Answers

Are you a Lincoln Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...