Question about 2004 GMC Envoy

1 Answer

Check engine light comes on . read out says map sensor. what is map sensor and what is its job. and how long to let it go

Posted by on

Ad

1 Answer

  • Level 3:

    An expert who has achieved level 3 by getting 1000 points

    All-Star:

    An expert that got 10 achievements.

    MVP:

    An expert that got 5 achievements.

    President:

    An expert whose answer got voted for 500 times.

  • Master
  • 1,702 Answers

The MAP sensor ( manifold absolute pressure ) the sensor monitors the engine vacuum, as the vacuum decreases like when you accelerate or are pulling a load like climbing a large hill. the on-board computer uses this info. and other info. from other sensors like the TPS and MASS to make adjustments to the fuel mixture and ignition timing to give you the most power and fuel economy. the computer will use other info. if it thinks the MAP is not giving correct readings but with out this sensor the fuel mileage and power will be reduced, you need to have it repaired soon, it most likely will not cause the car to stop running but it will not run properly with out the sensor. also the car will not pass a state emission test with the light on and the sensor not working.

Posted on Mar 15, 2011

Ad

1 Suggested Answer

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi,
a 6ya expert can help you resolve that issue over the phone in a minute or two.
Best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.
the service is completely free and covers almost anything you can think of.(from cars to computers, handyman, and even drones)
click here to download the app (for users in the US for now) and get all the help you need.
Goodluck!

Posted on Jan 02, 2017

Ad

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

How did engine idle too low?i come across dtc p0105 related to map sensor.engine check light display on mitsubishi pajero/gdi engine


I'm not sure I understand your question. When I first read it I thought you were saying you had an error code that the engine idle is low, but the error code you've given is for a MAP sensor problem which you mentioned in your post also. I'm going to guess that you've observed the low idle yourself, and when you ran the diagnostics the engine computer was complaining of a bad MAP sensor signal. This is triggered when the engine computer sees a change in another sensor that should correlate with a certain change in the MAP sensor, but the MAP sensor signal doesn't change as expected. Idle problems are a possible symptom of a bad MAP sensor, so this is not unreasonable. What your engine is telling you is that you should check the MAP sensor and its related wiring and hose connections to try to find your problem. If you fix the problem with the MAP sensor then your idle may start working properly again.

Feb 11, 2015 | 1992 Mitsubishi Pajero

1 Answer

2006 HHR with check engine light flashing. Codes


code 300 means multiple misfire due to plugs, wires, fuel problem including injectors.. A P0106 could be caused by:
  • Bad MAP sensor
  • Water/dirt intrusion affecting MAP sensor connector
  • Intermittent open in the reference, ground, or signal wire for the MAP sensor
  • Intermittent short in the reference, ground, or signal wire for the MAP sensor
  • Ground problem due to corrosion causing intermittent signal problem
  • A break in the flexible air intake duct between the MAF and the intake manifold
  • Bad PCM (do not assume the PCM is bad until you've exhausted all other possibilities)
Using a scan tool, watch the MAP sensor value with the key on, engine off. Compare the BARO reading with the MAP reading. They should be roughly equal. The voltage for the MAP sensor should read approx. 4.5 volts. Now start the engine and look for a significant drop in the MAP sensor voltage indicating the MAP sensor is working. If the MAP reading doesn't change perform the following:
  1. With the Key on, engine off, disconnect the vacuum hose from the MAP sensor. Using a vacuum pump, pull 20 in. of vacuum on the MAP sensor. Does the voltage drop? It should. If it doesn't inspect the MAP sensor vacuum port and vacuum hose to manifold for a restriction of some kind. Repair or replace as necessary.
  2. If there are no restrictions, and the value doesn't change with vacuum, then perform the following: with the Key on and engine off and the MAP sensor unplugged, check for 5 Volts at the reference wire to the MAP sensor connector with a Digital Voltmeter. If there is none, check for reference voltage at the PCM connector. If the reference voltage is present at the PCM connector but not the MAP connector, check for open or short in the reference wire between MAP and PCM and retest.
  3. If reference voltage is present, then check for existing ground at the MAP sensor connector. If it isn't present then repair open/short in the ground circuit.
  4. If ground is present, then replace MAP sensor.

Oct 10, 2014 | 2006 Chevrolet HHR

1 Answer

Sensor map


I doubt it.
The map sensor reads manifold vac and sends a signal to the computer. If the signal is out of range, the check engine light should come on. If the check engine light is on, that might affect trans performance.

Apr 22, 2013 | Pontiac Sunfire Cars & Trucks

1 Answer

P0108 engine light


Hi there:
DTC P0108 - Manifold Absolute Pressure/BARO Sensor High Input




Check the potential causes of a P0108 code:

Bad MAP sensor
Leak in vacuum supply line to MAP sensor
Engine vacuum leak
Short on signal wire to PCM
Short on reference voltage wire from PCM
Open in ground circuit to MAP
Worn engine causing low vacuum


Now, about the possible solutions... a good way to diagnose if the MAP sensor is to blame would be to compare the KOEO (key on engine off) MAP sensor reading on a scan tool with the Barometric pressure reading. They should be the same because they both measure atmospheric pressure.

If the MAP reading is greater than 0.5 volt off of the BARO reading, then replacing the MAP sensor would likely fix the problem. Otherwise, start the engine and observe the MAP reading at idle. It should normally be about 1.5 volts (varies according to altitude).

a. If it is, the problem is likely intermittent. Check all the vacuum hoses for damage and replace as necessary. You can also try wiggle testing the harness and connector to reproduce the problem.
b. If the scan tool MAP reading is more than 4.5 volts, check the actual engine vacuum reading with the engine running. If it is less than 15 or 16 in. Hg, then the PCM is probably not seeing enough vacuum (due to a worn engine, perhaps) for a given operating condition (which causes a higher than normal voltage signal to the PCM) and setting the code. Repair the engine vacuum problem and retest.
c. But, if the actual engine vacuum reading is 16 in. Hg or more, then unplug the MAP sensor. The scan tool MAP reading should indicate that there is no voltage present. Check that the ground from the PCM is intact and also that the MAP sensor connector and terminals are tight. If the connection is good, then replace the map sensor.
d. However if, with KOEO, & the MAP sensor unplugged, the scan tool shows a voltage reading, then there may be a short in the harness to the MAP sensor. Turn the ignition off. At the PCM unplug connector and remove the MAP signal wire from the connector. Re-attach the PCM connector and see if with KOEO, the scan tool MAP reading shows voltage. If it still does, replace the PCM. If not, check for voltage on the signal wire you just removed from the PCM. If there is voltage on the signal wire, find the short in the harness and repair.

Hope this helps; also keep in mind that your feedback is important and I`ll appreciate your time and consideration if you leave some testimonial comment about this answer.

Thank you for using FixYa, have a nice day.

Jun 20, 2012 | 2005 Lincoln LS V8

1 Answer

95 cadillac reading code current p105 sometimes engine light comes on sometimes harder to start than normal, idles up and down up on stopping


Symptoms Symptoms of a P0105 check engine light code may include:
  • Poor running engine
  • Engine runs rich
  • Engine won't idle
  • Engine backfires through tailpipe
  • Engine misfire under load or at idle
  • MIL (Malfunction Indicator Lamp) illumination
  • In some extreme cases there may be no symptoms other than MIL illumination
Causes A P0105 DTC could be caused by:
  • MAP sensor vacuum hose disconnected or plugged
  • Bad MAP Sensor
  • Bad TPS
  • Damaged or problematic MAP sensor connector
  • Damaged or problematic TPS connector
  • Damaged wiring
  • Short to reference voltage on signal circuit of MAP Sensor
  • Loss of ground to MAP sensor or TPS
  • Open on signal circuit of MAP sensor
  • Bad PCM
Possible Solutions Using a scanner or code reader, turn the ignition on and engine OFF; what does the MAP sensor voltage read? It should be about 4 Volts for sea level. If you are at a higher altitude, it should decrease about half a volt or so for each 1,000 ft. of altitude (this will vary from model to model) Or if you have a separate MAF (Mass air flow) sensor on your vehicle, they are usually equipped with a Barometric pressure reading. If so, the Baro reading should match the MAP reading (they both measure ambient air pressure). If they're roughly equal, then, check for Freeze Frame data of the MAP sensor (if available).
NOTE: Freeze Frame data is the PCM recording a fault when it happens. It captures the readings of the various PIDS (parameter identifiers)available to troubleshoot what happened. It's like a recording of the problem as it happened. At idle a typical MAP sensor Voltage reading should be about a volt, and at WOT (wide open throttle) it should approach 4.5 to 5 Volts. As for the TPS, at idle, the voltage reading is about 1 Volt or less. As the throttle is opened the reading will increase to 4.5 Volts at WOT. Do the two readings make sense? For example, if the TPS reading on Freeze Frame data shows 2.5 Volts (indicating partial throttle) does the MAP sensor indicate a reading that isn't at either extreme? Using the Freeze Frame data (if available) compare the MAP reading to the TPS when the problem occurred. This can help you identify what happened
If you have no access to Freeze Frame data then check if the MAP sensor voltage changes when you apply vacuum to it. You can do this by mouth or a vacuum pump. The voltage should increase as you apply vacuum. If the reading doesn't change as you apply vacuum, make sure there are no obstructions in the hose to the sensor. If the hose is clear, the MAP sensor is usually bad, but it doesn't rule out the following from causing the problem: Does the MAP sensor appear to be stuck at less than .5 Volts? Then:
NOTE: This code shouldn't set if the MAP is stuck at extremely low voltage, however, I'm adding it in because there's no way to know for certain for which vehicles a low voltage condition may set a P0105
  1. Inspect the wiring harness and MAP sensor connector. Repair any damage
  2. Unplug the MAP sensor connector. Also, at the PCM connector, remove the MAP sensor signal wire and check for continuity to the MAP sensor connector. If there is infinite resistance, then repair open in MAP signal circuit. If the signal wire has continuity to the MAP sensor connector, then check for 5 volt reference voltage to the connector and a good ground. If both are present, then re-install all removed wiring and replace the MAP sensor.
Does the MAP sensor appear to be stuck at full 4.5 voltage? Then:
  1. Inspect the wiring harness for damage. Repair as needed
  2. Remove the MAP sensor signal wire from the PCM connector. With a voltmeter measure the voltage with KEY ON ENGINE OFF. Is there 4.5 Volts? If so, unplug the MAP sensor and recheck. If it is still present, then repair short between the signal wire and 5 volt reference wire.
  3. If unplugging the MAP sensor causes the voltage to disappear, check that the ground is intact. If it is, then replace the MAP sensor due to internal short.

Jun 17, 2011 | 1995 Cadillac DeVille

1 Answer

Code po105 pops up i had it reset and every 3-4 days it lights back up what does it mean ?


Generic code results from http://www.obd-codes.com/p0105 :

P0105 - MAP Circuit Malfunction

Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction

The MAP (Manifold Absolute Pressure) sensor is part of the fuel management system. It reacts to changes in engine manifold pressure. The PCM (Powertrain Control Module) monitors the MAP sensor continually to properly run the engine. Changes in engine load require changes in the amount of fuel injected, and timing of the ignition system, etc. An engine under load has more manifold pressure(or less vacuum) than an engine that is coasting. As the load changes, the MAP sensor voltage signal to the PCM changes accordingly. To check the MAP sensor operation, though, the PCM watches other sensors to verify that the MAP sensor is working properly.

For example, the PCM compares the TPS (Throttle Position Sensor) signal to the MAP signal to verify the MAP signal isn't "sticking". If the PCM doesn't see a MAP sensor change immediately follow a change in the throttle pedal sensor, it knows there is a problem with the MAP sensor and sets P0105. Or, if the PCM notices that the TPS indicates the engine is under load, but the MAP signal indicates that the engine is "coasting" it, again, knows there is a problem with the MAP sensor or TPS and sets P0105.

FB.init("dd7d9e9681341cde77587bc6a2029f6f"); OBD-Codes.com on Facebook


Symptoms of a P0105 check engine light code may include:

  • Poor running engine
  • Engine runs rich
  • Engine won't idle
  • Engine backfires through tailpipe
  • Engine misfire under load or at idle
  • MIL (Malfunction Indicator Lamp) illumination
  • In some extreme cases there may be no symptoms other than MIL illumination

A P0105 DTC could be caused by:

  • MAP sensor vacuum hose disconnected or plugged
  • Bad MAP sensor
  • Bad TPS
  • Damaged or problematic MAP sensor connector
  • Damaged or problematic TPS connector
  • Damaged wiring
  • Short to reference voltage on signal circuit of MAP sensor
  • Loss of ground to MAP sensor or TPS
  • Open on signal circuit of MAP sensor
  • Bad PCM

Using a scanner or code reader, turn the ignition on and engine OFF; what does the MAP sensor voltage read? It should be about 4 Volts for sea level. If you are at a higher altitude, it should decrease about half a volt or so for each 1,000 ft. of altitude (this will vary from model to model) Or if you have a separate MAF (Mass air flow) sensor on your vehicle, they are usually equipped with a Barometric pressure reading. If so, the Baro reading should match the MAP reading (they both measure ambient air pressure). If they're roughly equal, then, check for Freeze Frame data of the MAP sensor (if available).

NOTE: Freeze Frame data is the PCM recording a fault when it happens. It captures the readings of the various PIDS (parameter identifiers)available to troubleshoot what happened. It's like a recording of the problem as it happened. At idle a typical MAP sensor Voltage reading should be about a volt, and at WOT (wide open throttle) it should approach 4.5 to 5 Volts. As for the TPS, at idle, the voltage reading is about 1 Volt or less. As the throttle is opened the reading will increase to 4.5 Volts at WOT. Do the two readings make sense? For example, if the TPS reading on Freeze Frame data shows 2.5 Volts (indicating partial throttle) does the MAP sensor indicate a reading that isn't at either extreme? Using the Freeze Frame data (if available) compare the MAP reading to the TPS when the problem occurred. This can help you identify what happened

If you have no access to Freeze Frame data then check if the MAP sensor voltage changes when you apply vacuum to it. You can do this by mouth or a vacuum pump. The voltage should increase as you apply vacuum. If the reading doesn't change as you apply vacuum, make sure there are no obstructions in the hose to the sensor. If the hose is clear, the MAP sensor is usually bad, but it doesn't rule out the following from causing the problem: Does the MAP sensor appear to be stuck at less than .5 Volts? Then:

NOTE: This code shouldn't set if the MAP is stuck at extremely low voltage, however, I'm adding it in because there's no way to know for certain for which vehicles a low voltage condition may set a P0105.

  1. Inspect the wiring harness and MAP sensor connector. Repair any damage
  2. Unplug the MAP sensor connector. Also, at the PCM connector, remove the MAP sensor signal wire and check for continuity to the MAP sensor connector. If there is infinite resistance, then repair open in MAP signal circuit. If the signal wire has continuity to the MAP sensor connector, then check for 5 volt reference voltage to the connector and a good ground. If both are present, then re-install all removed wiring and replace the MAP sensor.

Does the MAP sensor appear to be stuck at full 4.5 voltage? Then:

  1. Inspect the wiring harness for damage. Repair as needed
  2. Remove the MAP sensor signal wire from the PCM connector. With a voltmeter measure the voltage with KEY ON ENGINE OFF. Is there 4.5 Volts? If so, unplug the MAP sensor and recheck. If it is still present, then repair short between the signal wire and 5 volt reference wire.
  3. If unplugging the MAP sensor causes the voltage to disappear, check that the ground is intact. If it is, then replace the MAP sensor due to internal short.

Feb 27, 2011 | Jaguar X-Type Cars & Trucks

1 Answer

I have this eobd code problem p0105 in my elantra, where those sensors?


P0105 - Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction
The MAP (Manifold Absolute Pressure) sensor is part of the fuel management system. It reacts to changes in engine manifold pressure. The PCM (Powertrain Control Module) monitors the MAP sensor continually to properly run the engine. Changes in engine load require changes in the amount of fuel injected, and timing of the ignition system, etc. An engine under load has more manifold pressure(or less vacuum) than an engine that is coasting. As the load changes, the MAP sensor voltage signal to the PCM changes accordingly. To check the MAP sensor operation, though, the PCM watches other sensors to verify that the MAP sensor is working properly.

For example, the PCM compares the TPS (Throttle Position Sensor) signal to the MAP signal to verify the MAP signal isn't "sticking". If the PCM doesn't see a MAP sensor change immediately follow a change in the throttle pedal sensor, it knows there is a problem with the MAP sensor and sets P0105. Or, if the PCM notices that the TPS indicates the engine is under load, but the MAP signal indicates that the engine is "coasting" it, again, knows there is a problem with the MAP sensor or TPS and sets P0105.

Symptoms of a P0105 check engine light code may include:
* Poor running engine
* Engine runs rich
* Engine won't idle
* Engine backfires through tailpipe
* Engine misfire under load or at idle
* MIL (Malfunction Indicator Lamp) illumination
* In some extreme cases there may be no symptoms other than MIL illumination

Causes: A P0105 DTC could be caused by:
* MAP sensor vacuum hose disconnected or plugged
* Bad MAP sensor
* Bad TPS
* Damaged or problematic MAP sensor connector
* Damaged or problematic TPS connector
* Damaged wiring
* Short to reference voltage on signal circuit of MAP sensor
* Loss of ground to MAP sensor or TPS
* Open on signal circuit of MAP sensor
* Bad PCM

Possible Solutions:
Using a scanner or code reader, turn the ignition on and engine OFF; what does the MAP sensor voltage read? It should be about 4 Volts for sea level. If you are at a higher altitude, it should decrease about half a volt or so for each 1,000 ft. of altitude (this will vary from model to model) Or if you have a separate MAF (Mass air flow) sensor on your vehicle, they are usually equipped with a Barometric pressure reading. If so, the Baro reading should match the MAP reading (they both measure ambient air pressure). If they're roughly equal, then, check for Freeze Frame data of the MAP sensor (if available).

NOTE: Freeze Frame data is the PCM recording a fault when it happens. It captures the readings of the various PIDS (parameter identifiers)available to troubleshoot what happened. It's like a recording of the problem as it happened. At idle a typical MAP sensor Voltage reading should be about a volt, and at WOT (wide open throttle) it should approach 4.5 to 5 Volts. As for the TPS, at idle, the voltage reading is about 1 Volt or less. As the throttle is opened the reading will increase to 4.5 Volts at WOT. Do the two readings make sense? For example, if the TPS reading on Freeze Frame data shows 2.5 Volts (indicating partial throttle) does the MAP sensor indicate a reading that isn't at either extreme? Using the Freeze Frame data (if available) compare the MAP reading to the TPS when the problem occurred. This can help you identify what happened

If you have no access to Freeze Frame data then check if the MAP sensor voltage changes when you apply vacuum to it. You can do this by mouth or a vacuum pump. The voltage should increase as you apply vacuum. If the reading doesn't change as you apply vacuum, make sure there are no obstructions in the hose to the sensor. If the hose is clear, the MAP sensor is usually bad, but it doesn't rule out the following from causing the problem: Does the MAP sensor appear to be stuck at less than .5 Volts? Then:

NOTE: This code shouldn't set if the MAP is stuck at extremely low voltage, however, I'm adding it in because there's no way to know for certain for which vehicles a low voltage condition may set a P0105.

1. Inspect the wiring harness and MAP sensor connector. Repair any damage
2. Unplug the MAP sensor connector. Also, at the PCM connector, remove the MAP sensor signal wire and check for continuity to the MAP sensor connector. If there is infinite resistance, then repair open in MAP signal circuit. If the signal wire has continuity to the MAP sensor connector, then check for 5 volt reference voltage to the connector and a good ground. If both are present, then re-install all removed wiring and replace the MAP sensor.

Does the MAP sensor appear to be stuck at full 4.5 voltage? Then:
1. Inspect the wiring harness for damage. Repair as needed
2. Remove the MAP sensor signal wire from the PCM connector. With a voltmeter measure the voltage with KEY ON ENGINE OFF. Is there 4.5 Volts? If so, unplug the MAP sensor and recheck. If it is still present, then repair short between the signal wire and 5 volt reference wire.
3. If unplugging the MAP sensor causes the voltage to disappear, check that the ground is intact. If it is, then replace the MAP sensor due to internal short.

MAP sensor codes include P0106, P0107, P0108 and P0109 .


LOCATIONS:
Manifold Absolute Pressure (MAP) Sensor: The MAP sensor is located against the firewall to the left side of the engine.
Barometric Pressure Sensor: This sensor is installed on the VAF sensor; Volume Air Flow Sensor Is located in the air intake plenum assembly.

Hope this helps.

Jan 24, 2011 | 2001 Hyundai Elantra

1 Answer

I have a P0106 error code on my 97 Subaru Legacy Outback. I just had a valve job done on the heads. I put the engine back together and put it back in the car, taking great care in the process. All hoses...


Using a scan tool, watch the MAP sensor value with the key on, engine off. Compare the BARO reading with the MAP reading. They should be roughly equal. The voltage for the MAP sensor should read approx. 4.5 volts. Now start the engine and look for a significant drop in the MAP sensor voltage indicating the MAP sensor is working.

If the MAP reading doesn't change perform the following:

With the Key on, engine off, disconnect the vacuum hose from the MAP sensor. Using a vacuum pump, pull 20 in. of vacuum on the MAP sensor. Does the voltage drop? It should. If it doesn't inspect the MAP sensor vacuum port and vacuum hose to manifold for a restriction of some kind. Repair or replace as necessary.
If there are no restrictions, and the value doesn't change with vacuum, then perform the following: with the Key on and engine off and the MAP sensor unplugged, check for 5 Volts at the reference wire to the MAP sensor connector with a Digital Voltmeter. If there is none, check for reference voltage at the PCM connector. If the reference voltage is present at the PCM connector but not the MAP connector, check for open or short in the reference wire between MAP and PCM and retest.
If reference voltage is present, then check for existing ground at the MAP sensor connector. If it isn't present then repair open/short in the ground circuit.
If ground is present, then replace MAP sensor.

Mar 03, 2010 | Subaru Outback Cars & Trucks

1 Answer

2001 Acura 3.2 CL Type-S TPS and Map sensor issues...


no need to replace the throttle body , and i think that you make a test before to buy any piece . disconnect the negative battery terminal few minutes, then connnect and start engine again, drive few minutes by observing the engine, if light comes again, replace only map sensor ,good luckl

Apr 24, 2009 | 2001 Acura 3.2CL

1 Answer

I'm getting check engine light on my dash, and it tells me that its code P0106. how do i fix this and what is it?


This info coutesy of OBD-II codes.com

Potential Symptoms The following could be symptomatic of a P0106:
  • Engine runs rough
  • Black smoke at tailpipe
  • Engine will not idle
  • Poor fuel economy
  • Engine misses at speed
Causes A P0106 could be caused by:
  • Bad MAP sensor
  • Water/dirt intrusion affecting MAP sensor connector
  • Intermittent open in the reference, ground, or signal wire for the MAP sensor
  • Intermittent short in the reference, ground, or signal wire for the MAP sensor
  • Ground problem due to corrosion causing intermittent signal problem
  • Bad PCM (do not assume the PCM is bad until you've exhausted all other possibilities).
Possible Solutions Using a scan tool, watch the MAP sensor value with the key on, engine off. Compare the BARO reading with the MAP reading. They should be roughly equal. The voltage for the MAP sensor should read approx. 4.5 volts. Now start the engine and look for a significant drop in the MAP sensor voltage indicating the MAP sensor is working.
If the MAP reading doesn't change perform the following: 1. With the Key on, engine off, disconnect the vacuum hose from the MAP sensor. Using a vacuum pump, pull 20 in. of vacuum on the MAP sensor. Does the voltage drop? It should. If it doesn't inspect the MAP sensor vacuum port and vacuum hose to manifold for a restriction of some kind. Repair or replace as necessary. 2. If there are no restrictions, and the value doesn't change with vacuum, then perform the following: with the Key on and engine off and the MAP sensor unplugged, check for 5 Volts at the reference wire to the MAP sensor connector with a Digital Voltmeter. If there is none, check for reference voltage at the PCM connector. If the reference voltage is present at the PCM connector but not the MAP connector, check for open or short in the reference wire between MAP and PCM and retest. 3. If reference voltage is present, then check for existing ground at the MAP sensor connector. If it isn't present then repair open/short in the ground circuit. 4. If ground is present, then replace MAP sensor.

Jan 22, 2009 | Ford Freestyle Cars & Trucks

Not finding what you are looking for?
2004 GMC Envoy Logo

182 people viewed this question

Ask a Question

Usually answered in minutes!

Top GMC Experts

yadayada
yadayada

Level 3 Expert

76848 Answers

Freddy

Level 3 Expert

1311 Answers

Colin Stickland
Colin Stickland

Level 3 Expert

22246 Answers

Are you a GMC Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...