Question about 2000 Ford Expedition

1 Answer

Suspension back drops need to find module relay switch

Posted by on

  • ELVA75 Apr 02, 2009

    I HAVE A FORD EXPEDITION IT SEEMS LIKE THE FUEL PUMP IS NOT WORKING COULD YOU HELP?

×

1 Answer

  • Level 3:

    An expert who has achieved level 3 by getting 1000 points

    Superstar:

    An expert that got 20 achievements.

    All-Star:

    An expert that got 10 achievements.

    MVP:

    An expert that got 5 achievements.

  • Master
  • 1,010 Answers

I just replaced mine. It is actually under the hood on passenger side. You will see a fuse box above the fender well. The relay is mounted beside and just to the rear of the fuse box.

Posted on Jun 23, 2008

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

Rear suspension will deflate but why won't it inflate?


That could work , You mite be able to test the sensor in question with ohm meter . Test the front one an see what the resistance is ,then check the back one. I don't know what it should be with out looking it up in the service info . You could also check to see if the sensor is getting power from the control module , an see if there is a return input to the module .
There are a few DTC'S this able to set !
Air Suspension Control Module Diagnostic Trouble Code (DTC) Index
Air Suspension Control Module Diagnostic Trouble Code (DTC) Index DTCs Description Source Action B1318 Battery Voltage Low Air Suspension Control Module Go To Pinpoint Test C . B1342 Air Suspension Control Module Air Suspension Control Module INSTALL a new air suspension control module. REFER to Module-Air Suspension Control . SET the front ride height. REFER to Air Suspension Initialization (Clear DTC B2140). CLEAR the DTCs. REPEAT the self-test. B1485 Brake Pedal Input Circuit Battery Short Air Suspension Control Module RERUN On-Demand Self-Test. MAKE SURE that the brake pedal is not pressed. If DTC is returned again, REPAIR brake pedal position (BPP) circuitry. B1566 Door Ajar Circuit Short to Ground Air Suspension Control Module Go To Pinpoint Test D . B2140 Initialization Failure (Vehicle Ride Height Not Programmed) Air Suspension Control Module REFER to Air Suspension Initialization (Clear DTC B2140). C1439 Vehicle Acceleration EEC-V Circuit Failure Air Suspension Control Module Go To Pinpoint Test E . C1724 Air Suspension Height Sensor Power Circuit Failure Air Suspension Control Module Go To Pinpoint Test F . C1726 Air Suspension Pneumatic Failure Air Suspension Control Module Go To Pinpoint Test G . C1760 Air Suspension Height Sensor High Signal Circuit Failure Air Suspension Control Module Go To Pinpoint Test H . C1770 Air Suspension Vent Solenoid Output Circuit Failure Air Suspension Control Module Go To Pinpoint Test I . C1790 Air Suspension LR Air Spring Solenoid Output Circuit Failure Air Suspension Control Module Go To Pinpoint Test J . C1795 Air Suspension RR Air Spring Solenoid Output Circuit Failure Air Suspension Control Module Go To Pinpoint Test K . C1830 Air Suspension Compressor Relay Circuit Failure Air Suspension Control Module Go To Pinpoint Test L . C1917 Steering Electronic Variable Orifice (EEVO) Out-of-Range Fault Air Suspension Control Module Go To Pinpoint Test Q .
  • Uneven vehicle height
  • Circuitry.
  • Rear pneumatic fault.
  • Air compressor assembly.
  • Air suspension control module.
  • Go To Pinpoint Test I .

Nov 06, 2015 | 2002 Lincoln Navigator

1 Answer

My 98 lincoln navigator rear end has dropped what can it be


Your problem is due to your car's air ride suspension being temporarily off line. This is likely because your air-ride suspension relay is blown. Simply replace the relay module located in a large black box under your hood. Take lid off of black box and find the air suspension module and replace. It will look like a square silver match box plugged into a circuit board. Unplugg it and replace it with a new one.

Oct 22, 2010 | 1998 Lincoln Navigator

3 Answers

IM IN NEED OF A FUSE BOX DIAGRAM FOR A 1999 LINCOLN NAVIGATOR


go to the ford lincoln mercury website and enter you year, make, model of your vehicle. It will let you download a pdf version to your computer. then open the document and go to page 135. this is free don't pay for something you shouldn't, you already got the vehicle. this is just information. Fuse Location,Fuse Amp,Description
1) 25A Audio
2) 5A Clock, Overhead Trip Computer, Electronic
Automatic Temperature Control (EATC),
Powertrain Control Module (PCM), Cluster
3) 20A Cigar Lighter, OBD-II Scan Tool Connector
4) 15A Autolamp Module, Remote Entry Module,
Mirrors, Memory Module, Adjustable
Pedals, Air Suspension Switch
5) 15A AC Clutch Relay, Speed Control Module,
Reverse Lamp, EVO Module, Climate Mode
6 5A Cluster, Overhead Trip Computer, Compass,
Steering Sensor, Brake Shift Interlock
Solenoid, Air Suspension Module, GEM
Module
7 5A Aux A/C Blower Relay, Console Blower
8 5A Radio, Remote Entry Module, Cell Phone,
Clock, GEM Module
9 — Not Used
10 — Not Used
11 30A Front Washer Pump Relay, Wiper Run/Park
Relay, Wiper Hi/LO Relay, Windshield Wiper
Motor, Rear Washer Pump Relay
12 — Not Used
13 20A Stop Lamp Switch (Lamps), Turn/Hazard
Flasher, Speed Control Module
14 15A Rear Wipers, Running Board Lamps,
Battery Saver Relay, Interior Lamp Relay,
Accessory Delay Relay (Power Windows,
Flip Windows, Audio)
15 5A Stop Lamp Switch, (Speed Control, Brake
Shift Interlock, ABS, PCM Module Inputs),
GEM Module
16 20A Headlamps (Hi Beams), Cluster (Hi Beam
Indicator)
17 10A Heated Mirrors/Rear Window Defroster
Indicator
18 5A Instrument Illumination (Dimmer Switch
Power), Clock (Dimmer)
19 — Not Used
20 5A Audio, Four Wheel Air Suspension (4WAS)
Module, Memory Module, GEM Module,
Digital Transmission Range Selector
21 15A Starter Relay, Fuse 20
22 10A Air Bag Module
23 10A Electrochromic Mirror, Aux A/C, Heated
Seats, Trailer Tow Battery Charge,
Turn/Hazard Flasher, Console Blower Door
Actuator
24 10A Climate Mode Switch (Blower Relay),
EATC (via fuse 7), EATC Blower Relay
25 5A 4 Wheel Anti-Lock Brake System (4WABS)
Module
26 10A Right Side Low Beam Headlamp
27 5A Foglamp Relay and Foglamp Indicator
28 10A Left Side Low Beam Headlamp
29 5A Autolamp Module, Transmission Overdrive
Control Switch
30 30A Passive Anti Theft Transceiver, Cluster,
Ignition Coils, Powertrain Control Module
Relay
31 10A Rear Integrated Control Panel (Audio), CD
Player, Cell Phone
Relay 1 — Interior Lamp Relay
Relay 2 — Battery Saver Relay
Relay 3 — Rear Window Defroster Relay
Relay 4 — One Touch Down Window Relay
Relay 5 — ACC Delay Relay

hope this helps.

Jun 16, 2010 | 1999 Lincoln Navigator

3 Answers

The rear suspension air bags no work


start here

The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving condition:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) transfer case inputs, and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines, and the use of an air spring with an air spring solenoid.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed and the vehicle speed exceeds 16 km/h (10 mph).
Air Suspension Switch
The air suspension switch is located behind the RH kick panel on a mounting bracket. The switch interrupts power to the air suspension control module.
The air suspension switch supplies a signal to the air suspension control module. Without the air suspension control module receiving this signal the load leveling system is inoperative and will not react when rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • Is not interchangeable with four wheel air suspension (4WAS) compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is mounted in the engine compartment between the washer fluid bottle and headlamp (RH front corner).
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • Air drier has a single port and is not interchangeable with 4WAS compressor air drier.
  • Air drier may be replaced separately.
  • Incorporates a snorkle that may be replaced separately.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is located in the air compressor cylinder head.
  • Has a 160 psi internal relief valve.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • Is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The air springs are mounted between the axle spring seats and the frame upper spring seats.
The two air springs replace the conventional rear coil springs.
Air Suspension Height Sensor
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing of the vehicle and related components.
The air suspension control module is mounted in the passenger compartment inside the instrument panel above the radio and temperature controls.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Air Suspension Diagnostic Connector
The air suspension diagnostic connector is used to aid the technician in diagnosing the air suspension system. It is also used to vent the system of compressed air when air suspension system components need to be repaired or replaced. The air suspension diagnostic connector is located under steering column.

Oct 02, 2009 | 1998 Ford Expedition

2 Answers

Can any one tell me were how i can find the automatic level control on my 1994 town car


Description and Operation The rear air suspension:
  • Is an air-operated, microprocessor-controlled, suspension system.
  • Replaces the conventional rear coil spring suspension.
  • Provides low spring rates for improved ride and automatic rear load leveling.
  • Is standard equipment on the Town Car.
  • Is available as optional equipment on Crown Victoria and Grand Marquis.
The rear air suspension system has the following features:
  • The system is operational with the ignition switch in the RUN position.
  • Automatic rear load leveling has limited operation for one hour after ignition switch is turned to OFF.
  • The air suspension switch, located on the right side of the luggage compartment, must be turned OFF when the vehicle is on a hoist, being towed or jump started.
  • The Air Suspension warning indicator is located in the instrument panel, to the right of the speedometer.
    • The warning indicator flashes five times and then stays on when service switch is turned off or a system malfunction is detected.
  • The rear leveling system operates by adding or removing air in the springs to maintain the level of the vehicle at a predetermined rear suspension D ride height dimension, and is controlled by a control module (5A919) .
  • The rear air suspension control module also controls the electronic variable orifice (EVO) steering.
  • Refer to Section 11-02 for Description of the EVO steering system.
  • Air required for leveling the vehicle is distributed from the air compressor to the rear air springs by a nylon air line which runs from the compressor air dryer (5346) through a Y-fitting to each individual air spring.


Suspension, Computer Controlled—Town Car

c441c13.gif
Item Part Number Description 1 9C392 Compressor Relay Power Junction Block 2 5A897 Air Line (Attached to Brake/Fuel Bundle) 3 5319 Air Compressor With Regenerative Air Dryer and Vent Solenoid 4 5A897 Air Line to Compressor 5 5K761 Air Suspension Service Switch 6 14489 Data Link Connector 7 — Quick Connect 8 — To LH Air Spring 9 — From Compressor 10 — Y-Fitting (Part of 5A911) 11 — To RH Air Spring 12 5A908 Heat Shield 13 5A966 Spring Retainer Clip 14 5560 Rear Spring 15 5359 RearAir Suspension Height Sensor 16 5A919 Control Module 17 14018 Air Spring Solenoid

Control Module Power and Ground The control module (5A919) has the following features:
  • Power is provided by Circuit 418 and is controlled by the air suspension switch.
    • The air suspension switch is powered through a 15 amp fuse in Circuit 296 in Town Car.
    • AIR SUSPN PUMP (30A MAXI) fuse provides this power through Circuit 414 in the Crown Victoria/Grand Marquis.
  • Control module ground is provided through control module wire harness Pins 6 and 21, to the RH inner quarter panel sheet metal, near the control module .
---------------------------------
Weight Added When weight is added to the vehicle:
  • The air suspension height sensor (5359) length is reduced from trim length, sending a "rear is low" signal to the control module (5A919).
  • The control module then turns the compressor on by grounding the compressor relay control Circuit 420. This restores the rear of the vehicle to trim position.
    • Battery voltage is provided to the relay coil by Circuit 414.
  • The control module opens the spring solenoid valves (5311) by switching Circuits 416 and 429 to ground. This allows pressurized air to enter the springs.
    • Battery voltage is provided to the air spring solenoid valves by Circuit 414.
  • Compressed air flows from the compressor, through the compressor air dryer (5346) airlines and spring solenoid valves into the rear springs (5560).
  • As the rear springs raise the rear body height, the air suspension height sensor increases in length until the preset trim height is reached.
  • The control module then turns off the compressor (through the relay) and closes the air spring solenoid valves.
----------------------------------------------------------------------
Weight Removed When weight is removed:
  • The air suspension height sensor (5359) length is increased from the trim length, sending a "rear is high" signal to the control module (5A919).
  • The control module then opens the vent solenoid valve (located in the compressor assembly) by switching Circuit 421 to ground and opens the solenoid valves (5311) by switching Circuits 416 and 429 to ground. This restores the rear of the vehicle to trim position.
  • Compressed air flows from rear springs (5560), through the air spring solenoid valves, air lines, compressor air dryer (5346), and out the vent solenoid valve.
  • As the body lowers, the air suspension height sensor length decreases until the preset trim height is reached.
  • The control module then closes the vent and solenoid valves.
-----------------------------------------
Control module operates as follows:
  • In general the control module uses a 45-second averaging interval to determine when compress and vent operations are needed.
  • However, door courtesy lamp switch (13713) inputs can override the 45-second averaging interval so compress and vent operations can begin immediately, if needed.
  • The 45-second averaging interval is used to keep the control module from making unneeded corrections.
  • When a vehicle at the correct rear trim height hits a bump, the air suspension height sensor output will read low and high in addition to trim until the oscillations die out.
  • If the control module were to correct for these "bump induced readings", system duty cycle would increase unnecessarily.
  • The 45-second averaging interval not only eliminates corrections due to bumps, but also eliminates unneeded corrections resulting from braking, accelerating, and turning. The control module tabulates the air suspension height sensor readings, and does not begin a compress or vent operation until the air suspension height sensor (5359) reads low or high for 45 seconds consistently.
  • There are more restrictions on vent operations than there are on compress operations.
  • To eliminate the chance of catching a door on a curb as the vehicle vents down, the control module will not allow any venting to occur when a door is open.
  • The control module does not allow any vent operations for the first 45 seconds after the ignition switch (11572) has been turned to RUN.
    • Even if a vehicle is extremely high in the rear, DO NOT expect it to vent until the ignition switch has been turned to RUN for 45 seconds.

Jun 24, 2009 | 1994 Lincoln Town Car

3 Answers

Rear air bag suspension failure 1998 Ford EXP E.B. 2x2


this will get you started. report back on progress and we'll go from there. There is a diagnostic test that will provide codes I think. I will look.

The system consists of unique rear air springs, air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) transfer case inputs, and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines, and the use of an air spring with an air spring solenoid.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed and the vehicle speed exceeds 16 km/h (10 mph).
Air Suspension Switch
The air suspension switch is located behind the RH kick panel on a mounting bracket. The switch interrupts power to the air suspension control module.
The air suspension switch supplies a signal to the air suspension control module. Without the air suspension control module receiving this signal the load leveling system is inoperative and will not react when rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • Is not interchangeable with four wheel air suspension (4WAS) compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is mounted in the engine compartment between the washer fluid bottle and headlamp (RH front corner).
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • Air drier has a single port and is not interchangeable with 4WAS compressor air drier.
  • Air drier may be replaced separately.
  • Incorporates a snorkle that may be replaced separately.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is located in the air compressor cylinder head.
  • Has a 160 psi internal relief valve.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • Is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The air springs are mounted between the axle spring seats and the frame upper spring seats.
The two air springs replace the conventional rear coil springs.
Air Suspension Height Sensor
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing of the vehicle and related components.
The air suspension control module is mounted in the passenger compartment inside the instrument panel above the radio and temperature controls.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Solenoid Valve, Air Spring
swj~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Never rotate an air spring solenoid valve to the release slot in the end cap fitting until all pressurized air has escaped from the spring to prevent damage or injury.
The air spring solenoid:
  • allows air to enter and exit the air spring during leveling operations.
  • is electrically operated and controlled by the air suspension control module.
Air Suspension Diagnostic Connector
The air suspension diagnostic connector is used to aid the technician in diagnosing the air suspension system. It is also used to vent the system of compressed air when air suspension system components need to be repaired or replaced. The air suspension diagnostic connector is located under steering column.

Jun 01, 2009 | 1998 Ford Expedition

2 Answers

No power to rear bags its down but wont air up bags dont seem cracked unplugged connector no power I tried resetting still no power


is switch on?
The air suspension switch and bracket is mounted below the RH side of the instrument panel.

Dealer can run diagnostic test with scan tool for fault codes.
----------

The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving conditions:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed or the vehicle speed exceeds 16 km/h (10 mph).
------------------------------------
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The two air springs support the conventional rear leaf coil springs.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
------------------------------------------------------------------------
Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed or crimped air line(s)
  • Unmounted height sensor
  • Damaged air spring(s)
  • Open fuses:
    • Central junction box (CJB) Fuse 4 (15A), 6 (5A) and 20 (5A)
    • Battery junction box (BJB) Fuse 109 (50A)
  • Loose, corroded or disconnected connectors
  • Air suspension switch is in the OFF position
  • Damaged solenoid valve(s)


-----------------------------------------------------------
  • The compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.

Apr 30, 2009 | 2000 Ford Expedition

3 Answers

Rear air suspension compressor not engaging.


what year? here's 2003 rear air only info, not 4 wheel air.

you have a fuse panel in truck and 1 under hood.




Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed or crimped air line(s)
  • Unmounted height sensor
  • Damaged air spring(s)
  • Open fuses:
    • Central junction box (CJB) Fuse 4 (15A), 6 (5A) and 20 (5A)
    • Battery junction box (BJB) Fuse 109 (50A)
  • Loose, corroded or disconnected connectors
  • Air suspension switch is in the OFF position
  • Damaged solenoid valve(s)

  • compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.
  • Go To Pinpoint Test P .



----------------------------------------------------------------------------

The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.

Air Suspension Switch
The air suspension switch supplies power to the air suspension control module. Without the air suspension control module receiving this power, the load leveling system is inoperative and will not react when the rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off the air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • is a single cylinder electric motor driven unit that provides pressurized air as required.
  • is powered by a solid state relay which is controlled by the air suspension control module.
  • passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • air drier has a single port.
  • air drier may be replaced separately.
  • incorporates a snorkel that may be replaced separately.
The vent solenoid:
  • allows air to escape from the system during venting actions.
  • is part of the air compressor cylinder head.
  • has a 1,103 kPa (160 psi) internal relief valve.
  • shares a common electrical connector with the air compressor motor.
  • is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • has an O-ring seal that prevents air leakage past the valve tip.
  • opens when the air suspension control module determines lowering is required.
  • provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The two air springs support the conventional rear leaf coil springs.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Solenoid Valve, Air Spring
s2j~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Never rotate an air spring solenoid valve to the release slot in the end cap fitting until all pressurized air has escaped from the spring to prevent damage or injury.
The air spring solenoid:
  • allows air to enter and exit the air spring during leveling operations.
  • is electrically operated and controlled by the air suspension control module.
  • is only installed as a unit.

Apr 18, 2009 | 2003 Lincoln Navigator

1 Answer

99 expedition air suspension compressor runs every couple minutes


It is normal for some cycling of the compressor as the ride heights change and the compressor vents and fills air springs. Info:

Air Compressor
The air compressor:
  • Is not interchangeable with the rear air suspension (RAS) air compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, which is controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • The drier may be replaced separately.
  • The drier has dual ports and is not interchangeable with the RAS drier.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is part of the air compressor cylinder head.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air when system pressures exceed safe operating levels.
  • Has a 1792 kPa (260 psi) internal relief valve.
  • Is installed with the air compressor as a unit.
Compressor Relay
A solid state relay is used in the air suspension system for compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
The compressor solid state relay is energized by the air suspension control module to have high current flow from the battery to the compressor motor.
Control Module
NOTE: The 4WAS control module is also used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS system.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensors. A new or swapped air suspension control module requires the ride height adjustment calibration process to be performed.
A microcontroller-based electronic air suspension control module controls the air compressor motor (through a solid state relay) and all system solenoids. The air suspension control module also provides power to front and rear height sensors. The air suspension control module controls vehicle height adjustments by monitoring the two height sensors, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module is interchangeable between the RAS and 4WAS system.
The air suspension control module monitors and controls the system through a 32-pin two-way connector. The air suspension control module is keyed so that it cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.

Pressure Relief Valve
The pressure relief valve (PRV) protects the rear air suspension components by venting the system to a specific pressure in the case of a system malfunction. The system will decrease the pressure to an acceptable level to maintain vehicle height. In the normal operation mode with normal system pressure, the PRV is constantly closed and does not have any effect on the system performance or function. The PRV is replaceable without any air lines.
  1. If the concern remains after the inspection, use New Generation STAR (NGS) Tester connected to the data link connector (DLC) to retrieve continuous diagnostic trouble codes (DTCs) and to execute On-Demand Self-Test diagnostics for the air suspension control module.
    • If the On-Demand Self-Test is passed and no DTCs are retrieved, go to the Symptom Chart to continue diagnostics.
    • If DTCs are retrieved, go to Air Suspension Control Module Diagnostic Trouble Code (DTC) Index in this section.
    • If the air suspension control module cannot be accessed by NGS Tester, go to Pinpoint Test A.
Self-Test
Verify that the following conditions are met before running the On-Demand Self-Test.
  • All doors, liftgate, and liftgate glass must be closed.
  • The transmission is in PARK.
  • The BPP switch is not pressed during the test and the parking brake is not set.
  • The accelerator pedal is not pressed during the test.
  • The vehicle is not in 4L mode.
  1. Fulfill the pre-conditions.
  1. Install a battery charger for the On-Demand Self-Test to prevent battery drain.
  1. Run the air suspension On-Demand Self-Test.
  1. Record all listed DTCs.
  1. Retrieve stored DTCs.
  1. Troubleshoot any On-Demand Self-Test DTCs first.
  1. Retest and clear DTCs after repairs.

Apr 13, 2009 | 2000 Ford Expedition

1 Answer

Airride suspension won't deflate only inflate


It will only process a "down command" if it thinks all the doors are closed. If you have a bad door switch, it won't lower. Any courtesy lights on with doors closed?
The dealer can conduct a diagnostic scan test and retrieve any codes that will help identify the bad circuit. Did they do that?

Do you have 4 wheel air suspension or just rear?

Assuming rear only:
The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.

Note this section.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed or the vehicle speed exceeds 16 km/h (10 mph).

Air Suspension Switch
The air suspension switch supplies power to the air suspension control module. Without the air suspension control module receiving this power, the load leveling system is inoperative and will not react when the rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off the air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
--------------------------------------------------------------------
The vent solenoid:
  • allows air to escape from the system during venting actions.
  • is part of the air compressor cylinder head.
  • has a 1,103 kPa (160 psi) internal relief valve.
  • shares a common electrical connector with the air compressor motor.
  • is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • has an O-ring seal that prevents air leakage past the valve tip.
  • opens when the air suspension control module determines lowering is required.
  • provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • is replaced with the air compressor as a unit.
---------------------------------------------------------------
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
---------------------------------------------------
May be a bad module too.

Apr 11, 2009 | 2000 Lincoln Navigator

Not finding what you are looking for?
2000 Ford Expedition Logo

Related Topics:

207 people viewed this question

Ask a Question

Usually answered in minutes!

Top Ford Experts

yadayada
yadayada

Level 3 Expert

60667 Answers

Colin Stickland
Colin Stickland

Level 3 Expert

21936 Answers

Fordexpert

Level 3 Expert

5331 Answers

Are you a Ford Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...