Question about 2000 Ford Expedition

1 Answer

How do I test the rear height sensor (and any others)as well as the compressor in a 2001 Ford Expedition Eddie Bauer's air suspension?

Posted by on

  • netmark Nov 16, 2009

    emissionwiz- so those components can't be tested by removing them and directly applying 12v for the compressor and using a volt/ohm meter on switches/sensors?

    The only tool I have is a $99 OBDII reader.

  • netmark Nov 23, 2009

    thanks!

×

1 Answer

  • Level 3:

    An expert who has achieved level 3 by getting 1000 points

    Top Expert:

    An expert who has finished #1 on the weekly Top 10 Fixya Experts Leaderboard.

    Superstar:

    An expert that got 20 achievements.

    All-Star:

    An expert that got 10 achievements.

  • Ford Master
  • 75,117 Answers

To test the ride height sensor (or any other component in the system) the manual calls for using Scan tool called an NGS (new generation star tester), this reads the sensors and is able to toggle the air pump on and off to check the system, it can also raise and lower the truck to test the systems active operation functions, it also performs a diagnostic self test that operates the system and gives u trouble codes, I have worked in a Ford dealer for 30 years and have seen many of these Expedition with ride height related problems, the most common part that fails by far is the air bags leak, this is very common after about 75,000. As this system is very expensive to fix I would suggest u install a bypass kit from www.strutmaster.com , it is much cjeaper than repairing the factory installed system.

Posted on Nov 16, 2009

  • yadayada
    yadayada Nov 16, 2009

    the service manual gives codes then testing procedures for those codes, they are not tested by pulling them off.one at a time, but here is a tip, with the level sensor off attach a DVOM set to 2K scale, the resistance should increase and decrease smoothly as you move the arm up ad down, I never found one of these bad..

×

1 Suggested Answer

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi,
a 6ya expert can help you resolve that issue over the phone in a minute or two.
best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.
the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).
click here to download the app (for users in the US for now) and get all the help you need.
goodluck!

Posted on Jan 02, 2017

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

I have a 99 expedition, air ride suspension went out. Changed the air compressor and still will not air up. Checked the relay and seems to be working. One other time this happened and friend changed a...


Your best bet take it an have it diagnosed ! This is computer controlled an may have DTC'S - diagnostic trouble codes stored !
C1724 Air Suspension Height Sensor Power Circuit Failure Air Suspension Control Module GO to Pinpoint Test F . C1726 Air Suspension Rear Pneumatic Failure Air Suspension Control Module GO to Pinpoint Test G . C1760 Air Suspension Rear Height Sensor High Signal Circuit Failure Air Suspension Control Module GO to Pinpoint Test H . C1770 Air Suspension Vent Solenoid Output Circuit Failure Air Suspension Control Module GO to Pinpoint Test I . C1790 Air Suspension LR Air Spring Solenoid Output Circuit Failure Air Suspension Control Module GO to Pinpoint Test J . C1795 Air Suspension RR Air Spring Solenoid Output Circuit Failure Air Suspension Control Module GO to Pinpoint Test K . C1830 Air Suspension Compressor Relay Circuit Failure Air Suspension Control Module GO to Pinpoint Test L
Symptom Chart Condition Possible Sources Action
  • No communication with the air suspension control module
  • CJB Fuse 4 (15A), 6 (5A) and 20 (5A).
  • Circuitry.
  • Air suspension control module.
  • Air suspension switch.
  • GO to Pinpoint Test A .

You replaced a part that you probably didn't need !
  • The compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.
  • GO to Pinpoint Test Q .

There is a lot to this system an guessing as to what the problem is ,isn't the way to fix it.
Measure the voltage between air compressor relay C1000 Pin A, Circuit 1053 (LB/PK), harness side and ground.
  • Is the voltage greater than 10 volts?
Yes GO to Q3 .

No REPAIR the circuit. CLEAR the DTCs. REPEAT the self-test.
Measure the resistance between air compressor C1000 Pin B, Circuit 538 (GY/RD), harness side and air compressor assembly C194M Pin 4, Circuit 538 (GY/RD), harness side.
  • Is the resistance less than 5 ohms?
Yes GO to Q4 .

No REPAIR the circuit. CLEAR the DTCs. REPEAT the self-test.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
  • Air Suspension Control Module
    NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
    NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
    The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
    The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.

Jun 09, 2017 | 2000 Ford Expedition

1 Answer

Back end of my 2001 Ford Expedition FWD, Eddie Bauer, was dragging. Had diagnostic test run and found out it needed a new air ride compressor. Had compressor installed, but compressor continues to run...


The compressor should only run until the rear suspension reaches the desired height. If it continues to run after the suspension has raised to ride height then you may have a leaking air bag/solenoid or line. If you dont have any leaks it is possible the EVO(air suspension module} or relay is at fault.

Nov 14, 2010 | 2001 Ford Expedition

1 Answer

I have a 2000 ford expedition eddie bauer edition and my ck suspension light came on and the rear is at it's lowest how much will it cost me to have this reapired or replaced


OK, it sounds like the Ford Expedition from the year 2000 has either a leak in the system (air leak), or the compressor has gone bad causing it to not recover its normal ride height.

The shocks could be blown (air leak in them).

It depends on which component(s) in the system are damaged and need replaced to determine cost.

If you don't hear the compressor running to try to raise the vehicle, the height sensor on the rear axle could be damaged as well.

These are, of course, all of the possibilities that I can think of, off hand, that could be wrong with the system.

Aug 13, 2010 | 2000 Ford Expedition

1 Answer

The rear suspension is down on my 1999 Ford Expedition - Eddie Bauer. The cause: while out in the woods I came across a small dip which cause my back left wheel to lift off the ground. The suspension...


I had a 1999 Expedition. When you put the 4x4 on it raises the vehicle an extra inch or 2.
It may help to turn the 4x4 off. Two wheel drive is a lower air setting.
Your original pump may still be good. The problem can be in the front. The compressor is not filling the front suspension to the cutoff point. It will lift the rear after the front end is at running height. Since you lost the front end first, the remaining air bled out there and then the rear came down. Once you shut down the car the suspension was done, all the air was let go.
There are adjustment solenoids on the body but you need someone qualified to repair this.

Sep 05, 2009 | 1999 Ford Expedition

2 Answers

No power to rear bags its down but wont air up bags dont seem cracked unplugged connector no power I tried resetting still no power


is switch on?
The air suspension switch and bracket is mounted below the RH side of the instrument panel.

Dealer can run diagnostic test with scan tool for fault codes.
----------

The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving conditions:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed or the vehicle speed exceeds 16 km/h (10 mph).
------------------------------------
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The two air springs support the conventional rear leaf coil springs.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
------------------------------------------------------------------------
Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed or crimped air line(s)
  • Unmounted height sensor
  • Damaged air spring(s)
  • Open fuses:
    • Central junction box (CJB) Fuse 4 (15A), 6 (5A) and 20 (5A)
    • Battery junction box (BJB) Fuse 109 (50A)
  • Loose, corroded or disconnected connectors
  • Air suspension switch is in the OFF position
  • Damaged solenoid valve(s)


-----------------------------------------------------------
  • The compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.

Apr 30, 2009 | 2000 Ford Expedition

1 Answer

I have a 1998 ford expedition eddie bauer with front air bag suspension and after driving for about 45 minutes the air suspension light comes on. what's the problem and how do I fix it


here's some info. Do you have a warning light on or does it say "Check Susp"?

Control Module
NOTE: The 4-wheel air suspension (4WAS) control module is also used for the rear air suspension (RAS) system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS system.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensors. A new or swapped air suspension control module requires the ride height adjustment calibration process to be performed.
A microcontroller-based electronic air suspension control module controls the air compressor motor (through a solid state relay), and all system solenoids. The air suspension control module also provides power to front and rear height sensors. The air suspension control module controls vehicle height adjustments by monitoring the two height sensors, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing of the vehicle and related components.
The air suspension control module is mounted in the passenger compartment inside the instrument panel, above the radio and temperature controls. The air suspension control module is interchangeable between the RAS and 4WAS system.
The air suspension control module monitors and controls the system through a 32-pin two-way connector. The air suspension control module is keyed so that it cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Solenoid, Air Spring
swj~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Never rotate an air spring solenoid valve to the release slot in the end cap fitting until all pressurized air has escaped from the spring to prevent damage or injury.
The air spring solenoid:
  • Allows air to enter and exit the air spring during leveling operations.
  • Is electrically operated and controlled by the air suspension control module.
  • Is only replaced as a unit.
Air Suspension Diagnostic Connector
The air suspension diagnostic connector is used to aid the technician in diagnosing the air suspension system. It is also used to vent the system of compressed air when air suspension system components need to be repaired or replaced. The air suspension diagnostic connector is located under the steering column.
Steering Sensor
The steering sensor is mounted inside the passenger compartment on the steering column. It provides steering rate and position to the air suspension control module through two signals.
Pressure Relief Valve
The pressure relief valve (PRV) protects the rear air suspension components by venting the system to a specific pressure in the case of a system malfunction. The system will decrease the pressure to an acceptable level to maintain vehicle height. In the normal operation mode with normal system pressure the PRV is constantly closed and does not have any effect on the system performance or function. The PRV is replaceable without any air lines.
The PRV is located in the rear of the vehicle on the middle of crossmember #5 as a part of the rear air line assembly.

Mar 09, 2009 | 1998 Ford Expedition

1 Answer

EXPEDITION REAR AIR RIDE PROBLEM


do you have just rear air suspension? here's rear only. 4 wheel different. Deler an run a diagnostic test with WDS machine and get fault codes.
-------------------------------------------------------------------------------------
The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving conditions:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed or the vehicle speed exceeds 16 km/h (10 mph).
----------------------------------------------------------------------------------------
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level
------------------------------------------------------------------------------
  • Uneven vehicle height
  • Circuitry.
  • Rear pneumatic fault.
  • Air compressor assembly.
  • Air suspension control module.
  • Go To Pinpoint Test I .

Feb 21, 2009 | 2001 Ford Expedition

1 Answer

1997 expedition 2 wheel drive air suspension problem


There are ride height sensors in the rear that send a signal to the ride height/load leveling control module, one of these ,may be defective. Have Ford dealer run an active test of the system, they will find out what the part is that has failed, otherwise you are guessing, that equals wasted $$$

Nov 04, 2008 | 2000 Ford Expedition

Not finding what you are looking for?
2000 Ford Expedition Logo

Related Topics:

56 people viewed this question

Ask a Question

Usually answered in minutes!

Top Ford Experts

yadayada
yadayada

Level 3 Expert

75077 Answers

Colin Stickland
Colin Stickland

Level 3 Expert

22095 Answers

fordexpert

Level 3 Expert

5471 Answers

Are you a Ford Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...