Question about Cars & Trucks

Open Question

Supra DPS #MDT24SUPRADPS air mattress pump beeping at intervals indicating low pressure. CPR plugs are closed.

Posted by on

Ad

2 Suggested Answers

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi there,
Save hours of searching online or wasting money on unnecessary repairs by talking to a 6YA Expert who can help you resolve this issue over the phone in a minute or two.

Best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.

Here's a link to this great service

Good luck!

Posted on Jan 02, 2017

Ad
  • 49 Answers

SOURCE: low tire pressure indicator is on. I have put the

if u have the right tire pressure in the tires the light will go out . but sometimes you have to put 5 to 10 miles on the car to reset

Posted on Nov 17, 2009

Ad

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

I have a 2004 cadidillac deville with code P0410 & P0420


Circuit Description
The secondary air injection (AIR) system reduces exhaust emissions after initial engine starts. This occurs when the engine start-up coolant temperature and the intake air temperature (IAT) are at the parameters indicated in Conditions for Running. The AIR pump will continue to operate until Closed Loop operation is achieved.
The powertrain control module (PCM) activates the AIR system by simultaneously supplying a ground to the AIR pump relay and the AIR solenoid relay. The AIR pump forces pressurized fresh air into the pipes/hoses and past the AIR check valve into the bank 1 exhaust manifold, accelerating the catalyst operation. When the AIR system is inactive, the AIR shut-off valve prevents airflow in either direction.
The PCM can detect an AIR system airflow fault by monitoring the heated oxygen sensor (HO2S) bank 1 sensor 1 during normal Closed Loop engine operation. This is an active test. The active test will pass or fail based on the response from the HO2S 1. The active test consists of three tests run at 3-second intervals. A decreasing HO2S 1 voltage parameter response indicates that the AIR system is functioning properly.
The AIR system consists of the following components:
• The AIR pump
• The AIR pump relay
• The AIR injection electronic shut-off valve
• The AIR injection solenoid relay
• The fuses, and the related wiring
• The pipes/hoses
When the PCM detects an insufficient HO2S 1 response, DTC P0410 sets.

DTC P0420 Catalyst System Low Efficiency
Videos on youtube suggest you watch P0420 P0420 How To Diagnose Bad Catalytic Converter EricTheCarGuy How to test an electric air pump P0410 case study

Sep 04, 2016 | 2004 Cadillac Deville

Tip

Ford OBD-II Trouble Codes


P1000 OBD-II Monitor Testing Incomplete<br />P1001 KOER Test Cannot Be Completed<br />P1039 Vehicle Speed Signal Missing or Improper<br />P1051 Brake Switch Signal Missing or Improper<br />P1100 Mass Air Flow Sensor Intermittent<br />P1101 Mass Air Flow Sensor out of Self-Test Range<br />P1112 Intake Air Temperature Sensor Intermittent<br />P1116 Engine Coolant Temperature Sensor is out of Self-Test Range<br />P1117 Engine Coolant Temperature Sensor Intermittent<br />P1120 Throttle Position Sensor out of range<br />P1121 Throttle Position Sensor Inconsistent with Mass Air Flow Sensor<br />P1124 Throttle Position Sensor out of Self-Test Range<br />P1125 Throttle Position Sensor Intermittent<br />P1127 Heated Oxygen Sensor Heater not on During KOER Test<br />P1128 Heated Oxygen Sensor Signals reversed<br />P1129 Heated Oxygen Sensor Signals reversed<br />P1130 Lack of Upstream Heated Oxygen Sensor Switch - Adaptive Fuel Limit - Bank No. 1<br />P1131 Lack of Upstream Heated Oxygen Sensor Switch - Sensor Indicates Lean - Bank No. 1<br />P1132 Lack of Upstream Heated Oxygen Sensor Switch - Sensor Indicates Rich - Bank No. 1<br />P1135 Ignition Switch Signal Missing or Improper<br />P1137 Lack of Downstream Heated Oxygen Sensor Switch - Sensor Indicates Lean - Bank No. 1<br />P1138 Lack of Downstream Heated Oxygen Sensor Switch - Sensor Indicates Rich - Bank No. 1<br />P1150 Lack of Upstream Heated Oxygen Sensor Switch - Adaptive Fuel Limit - Bank No. 2<br />P1151 Lack of Upstream Heated Oxygen Sensor Switch - Sensor Indicates Lean - Bank No. 2<br />P1152 Lack of Upstream Heated Oxygen Sensor Switch - Sensor Indicates Rich - Bank No. 2<br />P1157 Lack of Downstream Heated Oxygen Sensor Switch - Sensor Indicates Lean - Bank No. 2<br />P1158 Lack of Downstream Heated Oxygen Sensor Switch - Sensor Indicates Rich - Bank No. 2<br />P1220 Series Throttle Control fault<br />P1224 Throttle Position Sensor B out of Self-Test Range<br />P1230 Open Power to Fuel Pump circuit<br />P1231 High Speed Fuel Pump Relay activated<br />P1232 Low Speed Fuel Pump Primary circuit failure<br />P1233 Fuel Pump Driver Module off-line<br />P1234 Fuel Pump Driver Module off-line<br />P1235 Fuel Pump Control out of range<br />P1236 Fuel Pump Control out of range<br />P1237 Fuel Pump Secondary circuit fault<br />P1238 Fuel Pump Secondary circuit fault<br />P1250 Lack of Power to FPRC Solenoid<br />P1260 Theft Detected - Engine Disabled<br />P1270 Engine RPM or Vehicle Speed Limiter Reached<br />P1288 Cylinder Head Temperature Sensor out of Self-Test Range<br />P1289 Cylinder Head Temperature Sensor Signal Greater Than Self-Test Range<br />P1290 Cylinder Head Temperature Sensor Signal Less Than Self-Test Range<br />P1299 Cylinder Head Temperature Sensor Detected Engine Overheating Condition<br />P1309 Misfire Detection Monitor not enabled<br />P1351 Ignition Diagnostic Monitor circuit Input fault<br />P1352 Ignition Coil A - Primary circuit fault<br />P1353 Ignition Coil B - Primary circuit fault<br />P1354 Ignition Coil C - Primary circuit fault<br />P1355 Ignition Coil D - Primary circuit fault<br />P1356 Loss of Ignition Diagnostic Module Input to PCM<br />P1358 Ignition Diagnostic Monitor Signal out of Self-Test Range<br />P1359 Spark Output circuit fault<br />P1364 Ignition Coil Primary circuit fault<br />P1380 VCT Solenoid Valve circuit Short or Open<br />P1381 Cam Timing Advance is excessive<br />P1383 Cam Timing Advance is excessive<br />P1390 Octane Adjust out of Self-Test Range<br />P1400 Differential Pressure Feedback Electronic Sensor circuit Low Voltage<br />P1401 Differential Pressure Feedback Electronic Sensor circuit High Voltage<br />P1403 Differential Pressure Feedback Electronic Sensor Hoses Reversed<br />P1405 Differential Pressure Feedback Electronic Sensor circuit Upstream Hose<br />P1406 Differential Pressure Feedback Electronic Sensor circuit Downstream Hose<br />P1407 EGR No Flow Detected<br />P1408 EGR Flow out of Self-Test Range<br />P1409? EGR Vacuum Regulator circuit malfunction<br />P1409? Electronic Vacuum Regulator Control circuit fault<br />P1410 EGR Barometric Pressure Sensor VREF Voltage<br />P1411 Secondary Air is not being diverted<br />P1413 Secondary Air Injection System Monitor circuit Low Voltage<br />P1414 Secondary Air Injection System Monitor circuit High Voltage<br />P1442 Secondary Air Injection System Monitor circuit High Voltage<br />P1443 Evaporative Emission Control System - Vacuum System - Purge Control Solenoid or Purge Control Valve fault<br />P1444 Purge Flow Sensor circuit Input Low<br />P1445 Purge Flow Sensor circuit Input High<br />P1450 Inability of Evaporative Emission Control System to Bleed Fuel Tank<br />P1451 EVAP Control System Canister Vent Solenoid Circuit Malfunction<br />P1452 Inability of Evaporative Emission Control System to Bleed Fuel Tank<br />P1455 Substantial Leak or Blockage in Evaporative Emission Control System<br />P1460 Wide Open Throttle Air Conditioning Cutoff circuit malfunction<br />P1461 Air Conditioning Pressure Sensor circuit Low Input<br />P1462 Air Conditioning Pressure Sensor circuit high Input<br />P1463 Air Conditioning Pressure Sensor Insufficient Pressure change<br />P1464 ACCS to PCM High During Self-Test<br />P1469 Low Air Conditioning Cycling Period<br />P1473 Fan Secondary High with Fans Off<br />P1474 Low Fan Control Primary circuit<br />P1479 High Fan Control Primary circuit<br />P1480 Fan Secondary Low with Low Fans On<br />P1481 Fan Secondary Low with High Fans On<br />P1483 Power to Cooling Fan Exceeded Normal Draw<br />P1484 Variable Load Control Module Pin 1 Open<br />P1500 Vehicle Speed Sensor Intermittent<br />P1501 Programmable Speedometer & Odometer Module/Vehicle Speed Sensor Intermittent circuit-failure<br />P1502 Invalid or Missing Vehicle Speed Message or Brake Data<br />P1504 Intake Air Control circuit malfunction<br />P1505 Idle Air Control System at Adaptive Clip<br />P1506 Idle Air Control Over Speed Error<br />P1507 Idle Air Control Under Speed Error<br />P1512 Intake Manifold Runner Control Stuck Closed<br />P1513 Intake Manifold Runner Control Stuck Closed<br />P1516 Intake Manifold Runner Control Input Error<br />P1517 Intake Manifold Runner Control Input Error<br />P1518 Intake Manifold Runner Control fault - Stuck Open<br />P1519? Intake Manifold Runner Control Stuck Open<br />P1520? Intake Manifold Runner Control circuit fault<br />P1519? Intake Manifold Runner Control fault - Stuck Closed<br />P1520? Intake Manifold Runner Control fault<br />P1530 Open or Short to A/C Compressor Clutch circuit<br />P1537 Intake Manifold Runner Control Stuck Open<br />P1538 Intake Manifold Runner Control Stuck Open<br />P1539 Power to A/C Compressor Clutch circuit Exceeded Normal Current Draw<br />P1549 Intake Manifold Temperature Valve Vacuum Actuator Connection<br />P1550 Power Steering Pressure Sensor out of Self-Test Range<br />P1605 PCM Keep Alive Memory Test Error<br />P1625 Voltage to Vehicle Load Control Module Fan circuit not detected<br />P1626 Voltage to Vehicle Load Control Module circuit not detected<br />P1650 Power Steering Pressure Switch out of Self-Test Range<br />P1651 Power Steering Pressure Switch Input fault<br />P1700 Transmission system problems<br />P1701 Reverse Engagement Error<br />P1702 Transmission system problems<br />P1703 Brake On/Off Switch out of Self-Test Range<br />P1704 Transmission system problems<br />P1705 Manual Lever Position Sensor out of Self-Test Range<br />P1709 Park or Neutral Position Switch out of Self-Test Range<br />P1710 Transmission system problems<br />P1711 Transmission Fluid Temperature Sensor out of Self-Test Range<br />P1713<br />thru<br />P172 Transmission system problems<br />P1729 4x4 Low Switch Error<br />P1740 Transmission system problems<br />P1741 Torque Converter Clutch Control Error<br />P1742 Torque Converter Clutch Solenoid Faulty<br />P1743 Torque Converter Clutch Solenoid Faulty<br />P1744 Torque Converter Clutch System Stuck in Off Position<br />P1745 Transmission system problems<br />P1746 Electronic Pressure Control Solenoid - Open circuit<br />P1747 Electronic Pressure Control Solenoid - Short circuit<br />P1749 Electronic Pressure Control Solenoid Failed Low<br />P1751 Shift Solenoid No. 1 Performance<br />P1754 Coast Clutch Solenoid circuit malfunction<br />P1756 Shift Solenoid No. 2 Performance<br />P1760 Transmission system problems<br />P1761 Shift Solenoid No. 3 Performance<br />P1762 Transmission system problems<br />P1767 Transmission system problems<br />P1780 Transmission Control Switch circuit is out of Self-Test Range<br />P1781 4x4 Low Switch is out of Self-Test Range<br />P1783 Transmission Over-Temperature Condition<br />P1784 Transmission system problems<br />P1785 Transmission system problems<br />P1786 Transmission system problems<br />P1787 Transmission system problems<br />P1788 Transmission system problems<br />P1789 Transmission system problems<br />P1900 Transmission system problems

on May 23, 2011 | Ford F Cars & Trucks

1 Answer

I am getting the following codes on my 2002 Nissan Altima v6 3.5 liter P1430, P1420, P1805, P1152, P1102, P1011, P1021 & P1335 I'm going crazy here. Please help!


Definition of Diagnostic Trouble Code P1430 Ford: Electric Air Pump Secondary Lincoln: Electric Air Pump Secondary Mazda: Electric Air Pump Secondary Mercury: Electric Air Pump Secondary Toyota: Intake Constrictor CTRL Circuit Open or Short

Definition of Diagnostic Trouble Code P1420 Audi: Second Air Injection Valve Circ Electrical Malfunction BMW: Secondary Air Valve Control Circuit Electrical Buick: Intake Air Low Pressure Switch Circuit Low Voltage Cadillac: Intake Air Low Pressure Switch Circuit Low Voltage Chevrolet: Intake Air Low Pressure Switch Circuit Low Voltage Chrysler: Register Resonant Charging 1 (RRC1) Dodge: Register Resonant Charging 1 (RRC1) Ford: Catalyst Temperature Sensor GMC: Intake Air Low Pressure Switch Circuit Low Voltage Honda: Nox Adsorptive Catalyst System Efficiency Below Threshold Catalytic converter Jeep: Register Resonant Charging 1 (RRC1) Lincoln: Catalyst Temperature Sensor Mazda: Catalyst system efficiency below threshold (bank 1) Mercedes: AIR Pump Switch over Valve Mercury: Catalyst Temperature Sensor Oldsmobile: Intake Air Low Pressure Switch Circuit Low Voltage Pontiac: Intake Air Low Pressure Switch Circuit Low Voltage Saturn: Intake Air Low Pressure Switch Circuit Low Voltage Subaru: EVAP Purge Control Solenoid Circuit High Input Toyota: SCV Control Circuit Malfunction Volkswagen: Second Air Injection Valve Circ Electrical Malfunction

Definition of Diagnostic Trouble Code P1805 Ford: Four wheel drive high indicator circuit failure Lincoln: Four wheel drive high indicator circuit failure Mazda: (4WD) High Indicator Open Circuit Mercury: Four wheel drive high indicator circuit failure Toyota: SB Solenoid Circuit Malfunction

Definition of Diagnostic Trouble Code P1152 Audi: Bank1, Long Term Fuel Trim, Range 2 Leanness Lower Limit Exceeded BMW: Oxygen Sensor Heater Circuit Low Voltage (Bank 2 Sensor 1) Ford: Lack Of Heated Oxygen Sensor Bank 2 Sensor 1 Switches - Sensor Indicates Rich Jaguar: Lack of H02S-21 switch, sensor indicates rich Land Rover: Oxygen sensor response time bank 2.Short circuit to ground Lincoln: Lack Of Heated Oxygen Sensor Bank 2 Sensor 1 Switches - Sensor Indicates Rich Mazda: Lack Of Heated Oxygen Sensor Bank 2 Sensor 1 Switches - Sensor Indicates Rich Mercury: Lack Of Heated Oxygen Sensor Bank 2 Sensor 1 Switches - Sensor Indicates Rich Subaru: Oxygen sensor range /performance problem (Low) Volkswagen: Bank1, Long Term Fuel Trim, Range 2 Leanness Lower Limit Exceeded Volvo: Oxygen Sensor Front, Bank 2

Definition of Diagnostic Trouble Code P1102 Acura: Mass Airflow (MAF) Sensor Lower Than Expected Comprehensive Audi: Oxygen Sensor Heating Circuit,Bank1-Sensor1 Short to B+ Chrysler: HEV Stop Request Performance Dodge: HEV Stop Request Performance Hyundai: MAP Sensor Circuit Low Input Jeep: HEV Stop Request Performance Kia: Heated Oxygen Sensor Bank 1 Sensor 1 Heater Circuit High Input Land Rover: Throttle to air flow plausibility not active.Last occurrence - minimum signal Mazda: Mass Air Flow Sensor In Range But Lower Than Expected Mitsubishi: Traction Control Ventilation Solenoid Circuit Porsche: Heated Oxygen Sensor 1 Ahead Of TWC Heater Short To B+ Saab: Front Heated Oxygen Sensor Bank 1, Control Module Input, Current in Pre-Heating Circuit Too High Subaru: Pressure Sources Switching Solenoid Valve Circuit Malfunction Volkswagen: Oxygen Sensor Heating Circuit,Bank1-Sensor1 Short to B+ Volvo: Power Stage Group B

Definition of Diagnostic Trouble Code P1011 Saab: Injector Cylinder 1 Shorting To Ground Toyota: OCV for VVTL Open Malfunction (Bank 1)

Definition of Diagnostic Trouble Code P1021 Honda: Valve Pause System Stuck On Comprehensive Mitsubishi: OCV OPN. Bank 1 Saab: Injector Cylinder 2 Shorting To Ground Toyota: OCV for VVTL Open Malfunction (Bank 2)

Definition of Diagnostic Trouble Code P1335 Audi: Engine Torque Monitoring 2 Control Limit Exceeded Buick: CKP Circuit Cadillac: CKP Circuit Chevrolet: CKP Circuit Ford: (EGR) Position Sensor Minimum Stop Performance GMC: CKP Circuit Infiniti: CKP Sensor (Ref) Jaguar: CKPS Circuit Malfunction Land Rover: Exhaust gas recirculation position sensor minimum stop performance. Lexus: Igniter Circuit Malfunction Bank 2 (During Engine Running) Lincoln: (EGR) Position Sensor Minimum Stop Performance Mazda: (EGR) Position Sensor Minimum Stop Performance Mercedes: CKP Sensor Circuit Malfunction, Bank 2 Mercury: (EGR) Position Sensor Minimum Stop Performance Oldsmobile: CKP Circuit Pontiac: CKP Circuit Saturn: CKP Circuit Toyota: No CKP Sensor Signal Engine Running Volkswagen: Engine Torque Monitoring 2 Control Limit Exceeded http://www.obd-codes.com/trouble_codes/nissan

Jun 29, 2015 | Nissan Cars & Trucks

1 Answer

My Sealy Right Touch air mattress won't stay inflated. How do I fix it?


Hi - we originally supplied the pump for Sealy and can sell you a replacement pump that will connect directly to your air mattress. The best way to confirm that it is the pump that leaks and not the air chamber is by switching the hoses at the pump. If the same side leaks it is the air chamber that leaks or the hose. If the opposite side leaks then it is the pump that leaks. Ferdinand 905 451 7243

Nov 17, 2012 | Cars & Trucks

1 Answer

My 84 supra starts and then dies right after wards ... but if i start it and pump the gas itll stay on till i let go what can be the problemWhat's your problem?


It could be low fuel pressure, or a vac leak, or a problem with the idle air control valve. Also the mass air flow meter, or the cold start valve.
I would start with testing the fuel pressure and the mass air flow meter.

Sep 18, 2012 | 1984 Toyota Celica Supra

1 Answer

Trying to bleed brake line, no success with pumping brakes. Two people , one pumping brakes the other bleeding. Not getting air or fluid.


It sounds like you may not be doing the process corectly. If you are, then I apologize. Make certain that the bleeder valve is in the closed position. Have another person pump the break peddle much in the same sequence as CPR (if that helps). Upon your command, the other person needs to apply steady pressure to the brake peddle until you tell him to release, and not before. While he is applying pressure, you, open the bleeder valve. At that time, the peddle should go to the flow. Close the bleeder valve BEFORE you tell him to release the pressure. Repeat the process until all four brake calipers have been bled, (meaning that you get a stream of fluid with no air bubbles.Periodically throughout the process, it is important to make certain that you have plenty of fluid in the reservoir. That should do it. If not, I'd like to know. Good luck.

Sep 27, 2010 | 1987 Chevrolet El Camino

2 Answers

My 2003 expedition giving code po171 have cleaned maf sensor in the air box didn't work what should i try next


P0171 is a lean fuel condition bank 1. Could be a bad O2 sensor on that side of the engine.

Could be a plugged fuel filter. How long since it was replaced? Close to or beyond the recommended interval?

Other possibilities...
Failing fuel pressure regulator.
Failing fuel pump.
Failing or plugged fuel injector.

Jan 05, 2010 | 2003 Ford Expedition

1 Answer

Air conditioner not working 1990 Toyota Supra


Check your freon level the pressure switch will not allow the compressor clutch to engage if the freon level is low.

Nov 11, 2008 | 1990 Toyota Supra

1 Answer

84 toyota supra 5 speed man.


sounds like ecm. car starts but when it switches over to run setting from cranking setting the cumputer ecu doent activate the run curcuits which may control your fuel injectors. check to see if engine has spark. remove one plug wire from spark plug put it close to the valve cover if you see an arc then you know that you have spark. then also go to fuel pump in tank and check voltage on the power wire if you have good voltage and the pump doesnt make any noise while ur cranking then it may be a fuel pump if the pump is making way to much noise then check the fuel pressure by hooking up a fuel pressure gauge. all test are to be done while someone cranks the engine. noid light for the injectors, disconnect on injector electical connetor connect the noid light to the wire that u just unplugged from the injector. the light will flash while u crank , once it goes to the run circut the light will either stay on which will shut off ur car or the light will stay off which will do the same. if the noid light did what I said when it went to the run circut then it is what controls your injectors...ecm good luck....daniel

Oct 11, 2008 | 1984 Toyota Celica Supra

2 Answers

I NEED TO LOCATE a/c LOW PRESSURE VALVE


If it's a MKIII supra, the low pressure port is right on top of the compressor.

Aug 10, 2008 | 1990 Toyota Supra

Not finding what you are looking for?
Cars & Trucks Logo

Related Topics:

27 people viewed this question

Ask a Question

Usually answered in minutes!

Top Cars & Trucks Experts

yadayada
yadayada

Level 3 Expert

79865 Answers

Colin Stickland
Colin Stickland

Level 3 Expert

22326 Answers

john h

Level 3 Expert

14479 Answers

Are you a Car and Truck Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...