Question about Cars & Trucks

Open Question

When looking from back of LC5 to front, the offside is about 30 mm higher than the nearside. When i use the rear height control on low, the nearside buffer rests on the axle,whilst a 30mm gap at off.

Is this an easy fix due to sensor problem or something more serious. When using height control for high the gap of 30 mm stays the same. The air compresser is working ok.

Posted by on

6 Suggested Answers

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi,
a 6ya expert can help you resolve that issue over the phone in a minute or two.
best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.
the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).
click here to download the app (for users in the US for now) and get all the help you need.
goodluck!

Posted on Jan 02, 2017

  • 107 Answers

SOURCE: Audi a3 rear brake light fault

the dealer can fix this or any mechanic with a vag com interface, basically its a matter of programing the tailgate lights (both of them) to work as brake lights. the euro speck enables one of the other or both, same goes for the backup light. if you had a module replaced recently this could be the reason for the change, whoever installed it should be able to rectify this for you.

Posted on Sep 23, 2008

chuck943
  • 783 Answers

SOURCE: rear air suspension holding air not venting, staying up to high

The air suspension uses the same vent solenoid to vent front so that will be ok. The problem will either be the rear height sensor which mounts on/near left side of rear axle. Or the air suspension module itself.
I would suspect it is the rear height sensor,the link may have come unhooked or it may be sticking or just bad.

Posted on Apr 10, 2009

bunnydawg
  • 5158 Answers

SOURCE: ABS warning light on permanently

check for cracks in the ring that the sensor reads off of... for the life of me i can't think of the proper name at the moment

Robert

Posted on May 27, 2009

  • 7353 Answers

SOURCE: 2003 ford navigator rear air susp. will not lower - at max ht.

sensor could be bad, telling the unit that it was too low so the comp just kept pumping it up??I think there are solenoids at each bag? really cant remember. isnt there a switch in the rear compartment to turn the susp off.

Posted on Sep 23, 2009

  • 1 Answer

SOURCE: I have used air ride parts to sell for a '98-02 Navigator

email me @ byron712@cableone.net

Posted on Oct 30, 2009

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

Ride height specification for 2002 Bravada and procedure on replacing sensors.Or where can I look on line for this information.


Air Suspension ??????

Air Suspension Description and Operation
Air Suspension
The primary mission of the Air Suspension System is the following for the rear suspension under loaded and unloaded conditions:
• Keep the vehicle visually level
• Provide optimal headlight aiming
• Maintain optimal ride height
The Air Suspension System consists of the following items:
• Air suspension compressor assembly
• Air suspension sensors
• Rear air springs
Important: The Air Suspension System must have a voltage supply of at least 12.6V to operate properly.
The Air Suspension System will maintain the rear D height within 4 mm (0.15 in) in all loading conditions and the leveling function will deactivate if the vehicle is overloaded. The side to side D height variation is maintained within 8 mm (0.31 in). After ignition is turned off, the air suspension control module (ASCM) will remain active for between 30 minutes and 2 1/2 hours. The system will exhaust pressure within 30 minutes after the ignition is turned off to lower the vehicle after unloading. In a temperature-controlled environment, the leakage of the complete load leveling system will not result in more than 1.4 mm (0.05 in) drop of rear suspension height at GVWR during a 24 hour period. If the outdoor temperature drops from +20°C (+68°F) to -5°C (+23°F), the rear D height may drop as much as 25 mm (1 in). However, the Air Suspension System should return to the specified D height when the ignition is again cycled to ON.

What is the problem ?

Diagnostic Trouble Code (DTC) Displaying
The Air Suspension system has an internal clock to prevent overheating if the compressor assembly is running for a prolonged period of time. If the system overheats, all leveling function stops until the system cools down. During this time, the indicator LED on the air inflator switch will be quickly flashing at a constant rate.
The other three diagnostic trouble codes are displayed with a blink code on the inflator switch LED. The Air Suspension Compressor Assembly shall begin to indicate the code when the condition to cause the code becomes current.
The number of the fault code shall be represented by the number of flashing pulses on the inflator switch LED. The flashing pulses shall have a repetition rate of 0.5 seconds and each code shall be separated by a 3.0 second delay. All codes shall be flashed in the order of occurrence of the fault. The blink code shall take priority over other processes that have access to the inflator switch LED. Refer to the following:
• DTC 001
• DTC 002
• DTC 003

Trim Height Uneven or Low ??????

Feb 24, 2017 | Cars & Trucks

1 Answer

Nearside front & rear lights not working, nearside & offside stop lamp not working, nearside headlamp not working on main beam. ford focus 2002.


sounds like it just turned 100,000 miles. Check the heater hose under the dash. Check fuses first.

Oct 05, 2013 | Cars & Trucks

1 Answer

I have a 99 expedition, air ride suspension went out. Changed the air compressor and still will not air up. Checked the relay and seems to be working. One other time this happened and friend changed a...


Your best bet take it an have it diagnosed ! This is computer controlled an may have DTC'S - diagnostic trouble codes stored !
C1724 Air Suspension Height Sensor Power Circuit Failure Air Suspension Control Module GO to Pinpoint Test F . C1726 Air Suspension Rear Pneumatic Failure Air Suspension Control Module GO to Pinpoint Test G . C1760 Air Suspension Rear Height Sensor High Signal Circuit Failure Air Suspension Control Module GO to Pinpoint Test H . C1770 Air Suspension Vent Solenoid Output Circuit Failure Air Suspension Control Module GO to Pinpoint Test I . C1790 Air Suspension LR Air Spring Solenoid Output Circuit Failure Air Suspension Control Module GO to Pinpoint Test J . C1795 Air Suspension RR Air Spring Solenoid Output Circuit Failure Air Suspension Control Module GO to Pinpoint Test K . C1830 Air Suspension Compressor Relay Circuit Failure Air Suspension Control Module GO to Pinpoint Test L
Symptom Chart Condition Possible Sources Action
  • No communication with the air suspension control module
  • CJB Fuse 4 (15A), 6 (5A) and 20 (5A).
  • Circuitry.
  • Air suspension control module.
  • Air suspension switch.
  • GO to Pinpoint Test A .

You replaced a part that you probably didn't need !
  • The compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.
  • GO to Pinpoint Test Q .

There is a lot to this system an guessing as to what the problem is ,isn't the way to fix it.
Measure the voltage between air compressor relay C1000 Pin A, Circuit 1053 (LB/PK), harness side and ground.
  • Is the voltage greater than 10 volts?
Yes GO to Q3 .

No REPAIR the circuit. CLEAR the DTCs. REPEAT the self-test.
Measure the resistance between air compressor C1000 Pin B, Circuit 538 (GY/RD), harness side and air compressor assembly C194M Pin 4, Circuit 538 (GY/RD), harness side.
  • Is the resistance less than 5 ohms?
Yes GO to Q4 .

No REPAIR the circuit. CLEAR the DTCs. REPEAT the self-test.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
  • Air Suspension Control Module
    NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
    NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
    The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
    The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.

Jun 09, 2017 | 2000 Ford Expedition

1 Answer

H1 mobile reset


My nearside main beam isn't workingicon1.png,on my freelander 2005. I have checked the fuses and they are okay and replaced the bulb and checked the fitting all looks fine, but still not workin all other front nearsides are okay (sidelight and full beam), as are the offside ones

Jul 25, 2013 | Hummer Cars & Trucks

1 Answer

Smell of burning rubber on offside rear wheel. Intermittent. Kia Ceed 113bhp 1.6


It could be the handbrake, and easy to check. Next time you smell it, feel the nearside brake caliper or drum, then carefully touch the offside one. You will notice the difference in heat. Under normal use, they get warm, but if it is burning, it will too hot to touch.

Also look under the car for anything near or touching the exhaust. Check mud flaps if you have them that they are not touching the tyre when you are in motion.

May 29, 2017 | Cars & Trucks

2 Answers

My nearside main beam isn't working, I have checked the fuses and they are okay and replaced the bulb, but still not workin all other front nearsides are okay (sidelight and full beam), as are the offside...


My nearside main beam isn't workingicon1.png, I have checked the fuses and they are okay and replaced the bulb,the fitting is fine. but it's still not workin all other front nearsides are okay (sidelight and full beam), as are the offside ones

Oct 05, 2010 | 2004 Land Rover FreeLander

3 Answers

The rear suspension air bags no work


start here

The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving condition:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) transfer case inputs, and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines, and the use of an air spring with an air spring solenoid.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed and the vehicle speed exceeds 16 km/h (10 mph).
Air Suspension Switch
The air suspension switch is located behind the RH kick panel on a mounting bracket. The switch interrupts power to the air suspension control module.
The air suspension switch supplies a signal to the air suspension control module. Without the air suspension control module receiving this signal the load leveling system is inoperative and will not react when rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • Is not interchangeable with four wheel air suspension (4WAS) compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is mounted in the engine compartment between the washer fluid bottle and headlamp (RH front corner).
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • Air drier has a single port and is not interchangeable with 4WAS compressor air drier.
  • Air drier may be replaced separately.
  • Incorporates a snorkle that may be replaced separately.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is located in the air compressor cylinder head.
  • Has a 160 psi internal relief valve.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • Is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The air springs are mounted between the axle spring seats and the frame upper spring seats.
The two air springs replace the conventional rear coil springs.
Air Suspension Height Sensor
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing of the vehicle and related components.
The air suspension control module is mounted in the passenger compartment inside the instrument panel above the radio and temperature controls.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Air Suspension Diagnostic Connector
The air suspension diagnostic connector is used to aid the technician in diagnosing the air suspension system. It is also used to vent the system of compressed air when air suspension system components need to be repaired or replaced. The air suspension diagnostic connector is located under steering column.

Oct 02, 2009 | 1998 Ford Expedition

1 Answer

I NEEDED THE 2001DODEGE CARAVAN SPECIFICATION


Hi,

2001 Dodge Caravan Performance Features -3,301 cc 3.3 liters 6 V engine with 93 mm bore, 81 mm stroke, 9.3 compression ratio, overhead valve and two valves per cylinder
-Unleaded fuel
-Fuel economy EPA highway (l/100km): 9.8
-Multi-point injection fuel system
-Main 76 liter unleaded fuel tank
-Power: SAE and 134 kW , 180 HP @ 5,000 rpm; 210 ft lb , 285 Nm @ 4,000 rpm
2001 Dodge Caravan Handling & Driving Features -ABS
-Two disc brakes including two ventilated discs
-Spacesaver steel rim under body spare wheel
-Strut front suspension with stabilizer bar independent with coil springs , beam rear suspension with stabilizer bar rigid with leaf springs
2001 Dodge Caravan Exterior Features -Body side molding
-Front and rear body color bumpers
-Driver and passenger power heated black door mirrors
-External dimensions: overall length (mm): 4,803, overall width (mm): 1,996, overall height (mm): 1,750, wheelbase (mm): 2,878, front track (mm): 1,600, rear track (mm): 1,626 and curb to curb turning circle (mm): 11,460
-Complex surface lens halogen bulb headlights
-Double sliding minivan side door
-Remote control operation opening rear ¼ windows
-Metallic paint , gloss paint , pearl paint
-Fixed rear window
-Tinted glass on cabin, rear and side
-Weights: curb weight (kg) 1,842, gross trailer weight braked (kg) 907 and max legal load (kg) 772
-Windshield wipers with variable intermittent wipe
2001 Dodge Caravan Interior Features -Air conditioning with rear outlet
-Fixed mast antenna
-Manufacturer's own audio system
-Automatic drive indicator on dashboard
-Below seat storage under passenger seat
-Cargo capacity: all seats in place (liters): 433, all seats removed (liters): 4,154 and third row seats removed (liters): 1,291
-Clock
-Dashboard full console with open storage box
-Delayed/fade courtesy lights
-Cruise control
-Front seats, rear seats and 3rd row seats cup holders
-Door ajar warning
-Door pockets/bins for driver seat and passenger seat
-Floor covering: carpet in load area
-Driver and passenger front airbag
-Bucket seat
-3-point reel height adjustable front seat belts on driver seat and passenger seat
-Front seat center armrest
-Glove compartment
-Height adjustable two head restraints on front seats, rear seats and 3rd row seats
-Internal dimensions: front headroom (mm): 1,011, rear headroom (mm): 998, front hip room (mm): 1,440, rear hip room (mm): 1,722, front leg room (mm): 1,031, rear leg room (mm): 930, front shoulder room (mm): 1,588 and rear shoulder room (mm): 1,643
-Low fuel level warning
-Low washer fluid level warning
-Internal button power locks
-Power steering
-Front power windows with one one-touch
-Front reading lights
-3-point reel height adjustable rear seat belts on driver side and passenger side
-Bench one-piece two rear seats
-Rear view mirror
-Upgraded cloth/velour seat upholstery
-Seating: seven seats
-Six speakers
-Plastic steering wheel
-Tachometer
-3-point reel third row seat belts on driver side , 3-point reel third row seat belts on passenger side , lap static third row seat belts on center side
-Front facing bench removable one-piece third row seats with capacity three
-Driver and passenger vanity mirror
-Ventilation system with recirculation setting
Thanks.

Jun 18, 2009 | 2001 Dodge Caravan

3 Answers

Rear air bag suspension failure 1998 Ford EXP E.B. 2x2


this will get you started. report back on progress and we'll go from there. There is a diagnostic test that will provide codes I think. I will look.

The system consists of unique rear air springs, air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) transfer case inputs, and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines, and the use of an air spring with an air spring solenoid.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed and the vehicle speed exceeds 16 km/h (10 mph).
Air Suspension Switch
The air suspension switch is located behind the RH kick panel on a mounting bracket. The switch interrupts power to the air suspension control module.
The air suspension switch supplies a signal to the air suspension control module. Without the air suspension control module receiving this signal the load leveling system is inoperative and will not react when rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • Is not interchangeable with four wheel air suspension (4WAS) compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is mounted in the engine compartment between the washer fluid bottle and headlamp (RH front corner).
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • Air drier has a single port and is not interchangeable with 4WAS compressor air drier.
  • Air drier may be replaced separately.
  • Incorporates a snorkle that may be replaced separately.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is located in the air compressor cylinder head.
  • Has a 160 psi internal relief valve.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • Is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The air springs are mounted between the axle spring seats and the frame upper spring seats.
The two air springs replace the conventional rear coil springs.
Air Suspension Height Sensor
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing of the vehicle and related components.
The air suspension control module is mounted in the passenger compartment inside the instrument panel above the radio and temperature controls.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Solenoid Valve, Air Spring
swj~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Never rotate an air spring solenoid valve to the release slot in the end cap fitting until all pressurized air has escaped from the spring to prevent damage or injury.
The air spring solenoid:
  • allows air to enter and exit the air spring during leveling operations.
  • is electrically operated and controlled by the air suspension control module.
Air Suspension Diagnostic Connector
The air suspension diagnostic connector is used to aid the technician in diagnosing the air suspension system. It is also used to vent the system of compressed air when air suspension system components need to be repaired or replaced. The air suspension diagnostic connector is located under steering column.

Jun 01, 2009 | 1998 Ford Expedition

Not finding what you are looking for?
Cars & Trucks Logo

Related Topics:

16 people viewed this question

Ask a Question

Usually answered in minutes!

Top Cars & Trucks Experts

yadayada
yadayada

Level 3 Expert

75197 Answers

Colin Stickland
Colin Stickland

Level 3 Expert

22095 Answers

Randy Ohler

Level 3 Expert

14585 Answers

Are you a Car and Truck Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...