Question about 1996 Lincoln Town Car

1 Answer

Suspension my 96 towncar has air suspension and rides high in the rear. is there a way to adjust this or a sensor to replace????

Posted by on

  • Anonymous Oct 23, 2008

    1996 towncar has no ride height sensor that looks like that. 98 and up only. is the ride hieght controlled through a computer or somthing??

×

1 Answer

  • Level 3:

    An expert who has achieved level 3 by getting 1000 points

    All-Star:

    An expert that got 10 achievements.

    MVP:

    An expert that got 5 achievements.

    Genius:

    An expert who has answered 1,000 questions.

  • Master
  • 1,056 Answers

Yes, there is a rear ride height sensor.
Looks kind of like a little shock absorber.
You might be able to find it at NAPA or similar parts house.
You're looking at least $100.00 to $175.00 for the part if you can find them.

Posted on Oct 18, 2008

1 Suggested Answer

6ya6ya
  • 2 Answers

SOURCE: I have freestanding Series 8 dishwasher. Lately during the filling cycle water hammer is occurring. How can this be resolved

Hi,
a 6ya expert can help you resolve that issue over the phone in a minute or two.
best thing about this new service is that you are never placed on hold and get to talk to real repairmen in the US.
the service is completely free and covers almost anything you can think of (from cars to computers, handyman, and even drones).
click here to download the app (for users in the US for now) and get all the help you need.
goodluck!

Posted on Jan 02, 2017

Add Your Answer

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

1 Answer

Air supension stays too high


There could be a couple of problems, first and easiest is the rear height sensor became disconnected from its mount. This is common because the sponsor clips on by a kinda weak spring and can be easily disconnected.also where the sensor mounts is a small round metal ball that screws onto frame and rear suspension, the balls after time wear to the point that the sensor spring cannot hold on.there's also an adjustment on the lower mount, if you move it up the vehicle will lower....then you could have a concern with the air compressor vent not allowing it to vent down to ride height. Or the vent solenoid on top of each bag stuck also not allowing it to vent..to ck it yourself, go for a short ride around the block and when you come back park on a level surface, shut off car, exit and close door....listen for an auditable click in the rear, and front left corner of car and watch the distance between rite and wheel lip, see if it drops. If it does I would be leaning towards the simple adjustment...also check thr front ride height on level surface, if you have a suspension problem on 1side of the car and it sits lower,it will throw off rear ride height. ...

Jun 10, 2014 | 1995 Lincoln Town Car

1 Answer

I have a 96 continental, and "check ride control"


is it the front, back, or both? Check the sensors, the one in the rear may have popped off it's mounting bracket-you have 2 in the front (one each side) and the solenoid that vents them may ber stuck closed (located near the air ride compressor)-tap it with a small hammer. If it is all four corners, the air ride module (under the dash, behind the glovebox) is probably either not plugged in properly (wiggle the harness or the connector) or defective (junkyard item, cheap-$5-$10 max).

Jan 27, 2011 | 1995 Lincoln Continental

1 Answer

I installed new air suspension bags on the rear. Now the back of the car sits up to high. Can you adjust the air ride sensor to correct this


There is no adjustment. Make sure the sensor is installed correctly. Maybe it came unhooked during the air spring replacement. The sensor snaps onto ball fittings. Also make sure the sensor is still connected properly to the electrical connector. If you can't get it to work, you may need to replace the sensor. Let me know if you have more questions.

Nov 26, 2010 | 1995 Mercury Grand Marquis

1 Answer

1999 Towncar - Air suspension shocks in good condition and car rides level - no idicator light is on. The car just rides way too stiff. Even the slightest bump jolts the inside (rattles change in ash...


I will check the shop manual, but the module does control ride for stiffness, increased stiffness at higher speeds, etc. If the bags are inflated, then the module cintrols how much air to allow in or out based on inputs to the module. See if you can get one from a salvage yard form a cash for clunkers car.

A dealer can run a test for fault codes in the computer. Call and ask how much for just a scan for fault codes in the air suspension module.

-----------------------------
Vehicle Dynamic Suspension The vehicle dynamic suspension consists of the following components:
  • Rear air suspension control (RAS) module (5A919)
  • Snorkel
  • Drier
  • Air compressor (5319)
  • Air suspension switch (5K761)
  • Solenoid valve (5311)
  • Air spring (5560)
  • Air suspension height sensor (5359)
  • Air line
----------------------------------------------------------------------------
Rear Air Suspension Control Module
A microprocessor controls the air suspension system. The microprocessor and its supporting hardware are contained in the rear air suspension control module. The rear air suspension control module responds to signals from various sensors in the vehicle to maintain the programmed ride height while the vehicle is either moving or stopped. The rear air suspension control module accomplishes this by opening and closing solenoid valves to control the amount of air in the air spring(s). The rear air suspension control module turns on the compressor by applying voltage through the compressor relay to inflate the air spring(s) and raise the vehicle. The rear air suspension control module opens the vent solenoid to lower the vehicle by releasing air from the air spring(s) in response to signal inputs from the air suspension height sensor(s).
Air Suspension Switch
sxg~us~en~file=ani_caut.gif~gen~ref.gif CAUTION: The air suspension switch must be turned to the OFF position when the vehicle is hoisted, jacked, towed, jump started, or raised off the ground, to avoid unnecessary operation of the system and possible damage to the air suspension system components.
The air suspension switch provides a signal to the rear air suspension control module in the ON position to activate the system to maintain the programmed vehicle height.
Air Compressor
NOTE: The compressor contains a thermal overload circuit breaker. The circuit breaker automatically resets after a cool down period and after being tripped by excessive compressor motor heat.
The air compressor assembly consists of the compressor pump, electric motor and vent solenoid (must be installed as an assembly).
Air Suspension Height Sensor
The air suspension height sensor sends signals to the air suspension control module. There are three possible conditions that the air suspension control module interprets from the signals of the air suspension height sensors. The conditions are trim height, below trim height, or above trim height.
Solenoid Valve, Air Spring
sxg~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Never rotate an air spring solenoid valve to the release slot in the air spring end cap fitting until all pressurized air has escaped from the air spring to prevent vehicle damage or personal injury.
The air spring solenoid valve allows air to enter and exit the rear air springs during height adjustment operations. The air spring solenoid valve is electrically operated and controlled by the air suspension control module.
Steering Sensor
The steering sensor provides the steering rate and position to the air suspension control module to avoid overcompensation of the air suspension during turns.
Inspection and Verification
  1. Verify the customer concern.
  1. NOTE: If the door ajar indicator is illuminated, repair the door ajar indicator. For additional information, refer to Section 413-09 .
    Visually inspect for obvious signs of mechanical and electrical damage.


Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed or crimped air line(s)
  • Incorrectly mounted, damaged or disconnected height sensor
  • Damaged air spring(s)
  • Central junction box (CJB) Fuse:
    • 8 (10A)
    • 17 (10A)
  • Battery junction box (BJB) Fuse 12 (30A)
  • Loose or corroded connectors
  • Air suspension switch
  • Damaged air spring solenoid(s)


  1. If the concern remains after the inspection, connect New Generation STAR (NGS) Tester to the data link connector (DLC) located beneath the instrument panel and select the vehicle to be tested from the NGS Tester menu. If NGS Tester does not communicate with the vehicle:
    • check that the program card is properly installed.
    • check the connections to the vehicle.
    • check the ignition switch position.
  1. If the NGS still does not communicate with the vehicle, refer to the New Generation STAR Tester manual.
  1. Carry out the DATA LINK DIAGNOSTIC TEST. If NGS Tester responds with:
    • CKT914, CKT915 or CKT70 = ALL ECUS NO RESP/NOT EQUIP. Refer to Section 418-00 .
    • NO RESP/NOT EQUIP for rear air suspension control module, go to Pinpoint Test A.
    • SYSTEM PASSED, retrieve and record the continuous diagnostic trouble codes (DTCs), erase the continuous DTCs and perform self-test diagnostics for the rear air suspension control module.
  1. If the DTCs retrieved are related to the concern, go to Rear Air Suspension Control Module Diagnostic Trouble Code (DTC) Index to continue diagnostics.
  1. If no DTCs related to the concern are retrieved, proceed to Symptom Chart to continue diagnostics.
Rear Air Suspension Control Module Diagnostic Trouble Code (DTC) Index
NOTE: If rear air suspension control module C251 is disconnected before rear air suspension control module C250, DTCs C1830, C1770, C1790 and C1795 will be retrieved and must be cleared before an accurate list of continuous DTCs can be retrieved. The DTCs C1441 and C1442 will only be retrieved when running the electronic variable orifice (EVO) functional test on NGS Tester. The DTC C1897 will only be retrieved once per ignition switch cycle.

-----------------------------------------------------------------------------------
Module —Air Suspension Control Removal
sxg~us~en~file=ani_caut.gif~gen~ref.gif WARNING: Before performing maintenance on any air suspension components, disconnect the power to the system by turning off the air suspension switch located on the LH side of the luggage compartment to prevent vehicle damage or personal injury.
sxg~us~en~file=ani_caut.gif~gen~ref.gif CAUTION: Electronic modules are sensitive to static electrical charges. If exposed to these charges, damage may result.
  1. Turn the air suspension switch off.
  1. Disconnect the battery ground cable (14301).
  1. Pull out the lower instrument panel insulator.
    1. Remove the pushpins.
    1. Pull out the lower instrument panel insulator.
  1. Remove the lower instrument panel insulator.
    1. Disconnect the power point.
    1. Disconnect the courtesy lamp.
    1. Remove the lower instrument panel insulator.
  1. Remove the rear air suspension control module.
    1. Remove the screws.
    1. Disconnect the electrical connectors.
    1. Remove the rear air suspension control module.
Installation
  1. NOTE: When the battery is disconnected and reconnected, some abnormal drive symptoms may occur while the vehicle relearns its adaptive strategy. The vehicle may need to be driven 16 km (10 mi) or more to relearn the strategy.
    To install, reverse the removal procedure.

Jan 20, 2010 | Lincoln Town Car Cars & Trucks

3 Answers

The rear suspension air bags no work


start here

The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving condition:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) transfer case inputs, and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines, and the use of an air spring with an air spring solenoid.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed and the vehicle speed exceeds 16 km/h (10 mph).
Air Suspension Switch
The air suspension switch is located behind the RH kick panel on a mounting bracket. The switch interrupts power to the air suspension control module.
The air suspension switch supplies a signal to the air suspension control module. Without the air suspension control module receiving this signal the load leveling system is inoperative and will not react when rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
Air Compressor
The RAS air compressor:
  • Is not interchangeable with four wheel air suspension (4WAS) compressor.
  • Consists of the compressor and vent solenoid; neither are replaceable as individual items.
  • Is mounted in the engine compartment between the washer fluid bottle and headlamp (RH front corner).
  • Is a single cylinder electric motor driven unit that provides pressurized air as required.
  • Is powered by a solid state relay, controlled by the air suspension control module.
  • Passes pressurized air through the compressor air drier that contains silica gel (a drying agent). Moisture is then removed from the compressor air drier when vented air passes out of the system during vent operation.
  • Air drier has a single port and is not interchangeable with 4WAS compressor air drier.
  • Air drier may be replaced separately.
  • Incorporates a snorkle that may be replaced separately.
The vent solenoid:
  • Allows air to escape from the system during venting actions.
  • Is located in the air compressor cylinder head.
  • Has a 160 psi internal relief valve.
  • Shares a common electrical connector with the air compressor motor.
  • Is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • Has an O-ring seal that prevents air leakage past the valve tip.
  • Opens when the air suspension control module determines lowering is required.
  • Provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • Is replaced with the air compressor as a unit.
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The air springs are mounted between the axle spring seats and the frame upper spring seats.
The two air springs replace the conventional rear coil springs.
Air Suspension Height Sensor
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket). Replace the air suspension height sensor as a unit.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing of the vehicle and related components.
The air suspension control module is mounted in the passenger compartment inside the instrument panel above the radio and temperature controls.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
Air Suspension Diagnostic Connector
The air suspension diagnostic connector is used to aid the technician in diagnosing the air suspension system. It is also used to vent the system of compressed air when air suspension system components need to be repaired or replaced. The air suspension diagnostic connector is located under steering column.

Oct 02, 2009 | 1998 Ford Expedition

2 Answers

No power to rear bags its down but wont air up bags dont seem cracked unplugged connector no power I tried resetting still no power


is switch on?
The air suspension switch and bracket is mounted below the RH side of the instrument panel.

Dealer can run diagnostic test with scan tool for fault codes.
----------

The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving conditions:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed or the vehicle speed exceeds 16 km/h (10 mph).
------------------------------------
Air Spring
RAS vehicles use air springs in the rear. The air springs provide a varying spring rate proportional to the systems air pressure and volume. The air suspension system regulates the air pressure in each air spring by compressing and venting the system air. Increasing air pressure (compressing) raises the rear of the vehicle while decreasing air pressure (venting) lowers the rear of the vehicle. Vehicle height is maintained by the addition and removal of air in each air spring through an air spring solenoid installed in the upper spring cap and energized through the air suspension control module.
The two air springs support the conventional rear leaf coil springs.
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
------------------------------------------------------------------------
Visual Inspection Chart Mechanical Electrical
  • Restricted suspension movement
  • Excessive vehicle load
  • Cut, severed or crimped air line(s)
  • Unmounted height sensor
  • Damaged air spring(s)
  • Open fuses:
    • Central junction box (CJB) Fuse 4 (15A), 6 (5A) and 20 (5A)
    • Battery junction box (BJB) Fuse 109 (50A)
  • Loose, corroded or disconnected connectors
  • Air suspension switch is in the OFF position
  • Damaged solenoid valve(s)


-----------------------------------------------------------
  • The compressor is inoperative
  • BJB Fuse 109 (50A).
  • Air compressor assembly.
  • Circuitry.
  • Air suspension relay.

Apr 30, 2009 | 2000 Ford Expedition

1 Answer

Airride suspension won't deflate only inflate


It will only process a "down command" if it thinks all the doors are closed. If you have a bad door switch, it won't lower. Any courtesy lights on with doors closed?
The dealer can conduct a diagnostic scan test and retrieve any codes that will help identify the bad circuit. Did they do that?

Do you have 4 wheel air suspension or just rear?

Assuming rear only:
The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.

Note this section.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed or the vehicle speed exceeds 16 km/h (10 mph).

Air Suspension Switch
The air suspension switch supplies power to the air suspension control module. Without the air suspension control module receiving this power, the load leveling system is inoperative and will not react when the rear of the vehicle is raised or lowered. If the air suspension system is disabled by turning off the air suspension switch, a "CHECK SUSP" will appear in the RH corner of the instrument cluster with the ignition in the run position.
--------------------------------------------------------------------
The vent solenoid:
  • allows air to escape from the system during venting actions.
  • is part of the air compressor cylinder head.
  • has a 1,103 kPa (160 psi) internal relief valve.
  • shares a common electrical connector with the air compressor motor.
  • is enclosed in the cylinder head casting, which forms an integral valve housing that allows the valve tip to enter the pressurized side of the system.
  • has an O-ring seal that prevents air leakage past the valve tip.
  • opens when the air suspension control module determines lowering is required.
  • provides an escape route for pressurized air that opens when system pressures exceed safe operating levels.
  • is replaced with the air compressor as a unit.
---------------------------------------------------------------
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level.
Compressor Relay
The compressor relay is energized by the air suspension control module to allow high current to flow from the battery to the compressor motor.
  • A solid state relay is used in the air suspension system for air compressor control. The relay incorporates a custom power metal oxide semi-conductor field effect transistor (MOSFET) and ceramic hybrid circuitry. The relay switches high current loads in response to low power signals and is controlled by the logic of the air suspension control module.
Air Suspension Control Module
NOTE: The 4WAS air suspension control module is used for the RAS system. The internal processor recognizes external circuitry to determine if it is installed in a 4WAS or a RAS equipped vehicle.
NOTE: The air suspension control module is calibrated with information from the air suspension height sensor. A new or exchanged air suspension control module requires a ride height adjustment calibration process to be performed.
The air suspension control module controls the air compressor motor (through a solid state relay), and the air spring solenoids. The air suspension control module also provides power to the air suspension height sensor. The air suspension control module controls vehicle height adjustments by monitoring the air suspension height sensor, vehicle speed, a steering sensor, acceleration input, the door ajar signal, transfer case signals, and the brake pedal position (BPP) switch. The air suspension control module also conducts all fail-safe and diagnostic strategies and contains self-test and communication software for testing the vehicle and related components.
The air suspension control module monitors and controls the air suspension system through a 32-pin two-way connector. The air suspension control module is keyed so that the air suspension control module cannot be plugged into an incorrect harness. There are two sides of the harness connection to the air suspension control module. Each is uniquely colored and keyed to prevent reversing the connections.
---------------------------------------------------
May be a bad module too.

Apr 11, 2009 | 2000 Lincoln Navigator

1 Answer

Hard ride in rear 04 towncar


It looks almost like a little shock absorber and it is located above the rear differential. 

the ride height  is adjustable by adding or reducing the amount of air in the tires, ergo, any damage would occur in the tires, not the car. 

Mar 30, 2009 | 2004 Lincoln Town Car

1 Answer

EXPEDITION REAR AIR RIDE PROBLEM


do you have just rear air suspension? here's rear only. 4 wheel different. Deler an run a diagnostic test with WDS machine and get fault codes.
-------------------------------------------------------------------------------------
The air suspension system is designed to improve ride, handling and general vehicle performance for static, on-road and off-road driving conditions:
  • Ride is improved by using an air type spring (the soft ride is inherent).
  • Handling is improved by maintaining constant vehicle attitude.
The system consists of unique rear air springs, the air compressor, air lines, air spring solenoids, height sensor, air suspension control module, attachments and associated signals derived from both driver and road inputs. With these components and signals, the air suspension control module commands changes in vehicle height that are necessary for the load leveling features.
The load leveling feature rear air suspension (RAS) systems shall automatically make adjustments in vehicle height so that the vehicle is always at trim height and constant front-to-rear vehicle attitudes are maintained over the expected load range of the vehicle. Adjustments in height that are necessary to correct height differences between the vehicle's left and right sides for the RAS system shall be restricted to what can be reliably achieved with one air suspension height sensor.
The system uses one air suspension height sensor, a steering sensor, generic electronic module (GEM) and other vehicle sensors to measure driver and road inputs. The system changes vehicle height using an air compressor, two air lines and the use of air springs with air spring solenoids.
The air suspension system holds vehicle height when the rear hatch or any door is opened. The system stores rear vehicle height the moment any open door is detected. The system then maintains this height regardless of the addition or removal of a load. The system will return to its commanded height when all doors are closed or the vehicle speed exceeds 16 km/h (10 mph).
----------------------------------------------------------------------------------------
Air Suspension Height Sensor
One air suspension height sensor is mounted on the vehicle. The air suspension height sensor sends a voltage signal to the air suspension control module. The output ranges from approximately 4.75 volts at minimum height (when the vehicle is low or in full jounce), to 0.25 volts at maximum height (when the vehicle is high or in full rebound). The air suspension height sensor has a useable range of 80 mm (3.2 in) compared to total suspension travel of 200-250 mm (8 to 10 in) at the wheel. Therefore, the air suspension height sensor is mounted to the suspension at a point where full rear suspension travel at the wheel is relative to 80 mm (3.2 in) of travel at the air suspension height sensor. The air suspension height sensor is attached between the No. 5 frame crossmember (upper socket) and the panhard rod (lower socket).
When the air suspension height sensor indicates that the rear of the vehicle is lower than trim under normal driving conditions, the air compressor will turn on and pump compressed air to the air springs. When the sensor indicates that the rear of the vehicle is raised above trim under normal driving conditions, this will cause the air to be vented from the air springs to lower the vehicle back to its trim height level
------------------------------------------------------------------------------
  • Uneven vehicle height
  • Circuitry.
  • Rear pneumatic fault.
  • Air compressor assembly.
  • Air suspension control module.
  • Go To Pinpoint Test I .

Feb 21, 2009 | 2001 Ford Expedition

1 Answer

92 lincoln towncar air bag light flashing


Air suspension is controlled by the compressor in your engine compartment.  The compressor runs when the suspension is not level.  Either because you have loaded the car with exceptional weight and the system is now adjusting the ride, or you have a leak in the system, or you have a bad sensor.
If you have a leak, the most likely culprit are the air suspension bags, the air suspension solenoids or possibly the lines to them.
Try these sites: http://www.strutmasters.com/catalog.php?cat=2

http://www.suncoreindustries.com/english-lincoln-town-car-89-06-air-suspension.html

I don't work for either of them.  I own a 96 TC and have replaced my air suspension with coil springs form Strutmasters.  Work GREAT and I have no more air suspension problems.  Rides just as good too.  You can't tell the difference.

Oct 18, 2008 | 1996 Lincoln Town Car

Not finding what you are looking for?
1996 Lincoln Town Car Logo

421 people viewed this question

Ask a Question

Usually answered in minutes!

Top Lincoln Experts

yadayada
yadayada

Level 3 Expert

70346 Answers

Ron Lankford

Level 3 Expert

5386 Answers

Colin Stickland
Colin Stickland

Level 3 Expert

22041 Answers

Are you a Lincoln Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...